V_a -deformed free convolution and variance function

Pub Date : 2024-01-31 DOI:10.1515/gmj-2024-2004
Raouf Fakhfakh
{"title":"V_a -deformed free convolution and variance function","authors":"Raouf Fakhfakh","doi":"10.1515/gmj-2024-2004","DOIUrl":null,"url":null,"abstract":"In this paper, we deal with the notion of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>V</m:mi> <m:mi>a</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2004_eq_0134.png\" /> <jats:tex-math>{V_{a}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-deformed free convolution, introduced in [A. D. Krystek and L. J. Wojakowski, Associative convolutions arising from conditionally free convolution, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 8 2005, 3, 515–545], from a point of view related to the theory of Cauchy–Stieltjes kernel (CSK) families and their corresponding variance functions. We determine the formula for variance function under a power of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>V</m:mi> <m:mi>a</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2004_eq_0134.png\" /> <jats:tex-math>{V_{a}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-deformed free convolution. Then we provide an approximation of elements of the CSK family generated by <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>V</m:mi> <m:mi>a</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2004_eq_0134.png\" /> <jats:tex-math>{V_{a}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-deformed free Poisson distribution.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2024-2004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we deal with the notion of V a {V_{a}} -deformed free convolution, introduced in [A. D. Krystek and L. J. Wojakowski, Associative convolutions arising from conditionally free convolution, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 8 2005, 3, 515–545], from a point of view related to the theory of Cauchy–Stieltjes kernel (CSK) families and their corresponding variance functions. We determine the formula for variance function under a power of V a {V_{a}} -deformed free convolution. Then we provide an approximation of elements of the CSK family generated by V a {V_{a}} -deformed free Poisson distribution.
分享
查看原文
V_a - 变形自由卷积和方差函数
本文将讨论 V a {V_{a}} 变形自由卷积的概念。 -变形自由卷积的概念。D. Krystek 和 L. J. Wojakowski, Associative convolutions arising from conditionally free convolution, Infin.Dimens.Anal.Quantum Probab.Relat.Top.8 2005, 3, 515-545], 从与 Cauchy-Stieltjes 核(CSK)族及其相应方差函数理论相关的角度出发。我们确定了 V a {V_{a}} 的幂下的方差函数公式。 -变形自由卷积下的方差函数公式。然后,我们提供了由 V a {V_{a}} 变形自由泊松分布生成的 CSK 族元素的近似值。 -变形自由泊松分布产生的 CSK 族元素的近似值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信