Lei Wang, Sha-Sha Guo, Lian-Hua Qu, Shuo Tian, Wei-Xia Xu
{"title":"M-LSM: An Improved Multi-Liquid State Machine for Event-Based Vision Recognition","authors":"Lei Wang, Sha-Sha Guo, Lian-Hua Qu, Shuo Tian, Wei-Xia Xu","doi":"10.1007/s11390-021-1326-8","DOIUrl":null,"url":null,"abstract":"<p>Event-based computation has recently gained increasing research interest for applications of vision recognition due to its intrinsic advantages on efficiency and speed. However, the existing event-based models for vision recognition are faced with several issues, such as large network complexity and expensive training cost. In this paper, we propose an improved multi-liquid state machine (M-LSM) method for high-performance vision recognition. Specifically, we introduce two methods, namely multi-state fusion and multi-liquid search, to optimize the liquid state machine (LSM). Multistate fusion by sampling the liquid state at multiple timesteps could reserve richer spatiotemporal information. We adapt network architecture search (NAS) to find the potential optimal architecture of the multi-liquid state machine. We also train the M-LSM through an unsupervised learning rule spike-timing dependent plasticity (STDP). Our M-LSM is evaluated on two event-based datasets and demonstrates state-of-the-art recognition performance with superior advantages on network complexity and training cost.</p>","PeriodicalId":50222,"journal":{"name":"Journal of Computer Science and Technology","volume":"23 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11390-021-1326-8","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Event-based computation has recently gained increasing research interest for applications of vision recognition due to its intrinsic advantages on efficiency and speed. However, the existing event-based models for vision recognition are faced with several issues, such as large network complexity and expensive training cost. In this paper, we propose an improved multi-liquid state machine (M-LSM) method for high-performance vision recognition. Specifically, we introduce two methods, namely multi-state fusion and multi-liquid search, to optimize the liquid state machine (LSM). Multistate fusion by sampling the liquid state at multiple timesteps could reserve richer spatiotemporal information. We adapt network architecture search (NAS) to find the potential optimal architecture of the multi-liquid state machine. We also train the M-LSM through an unsupervised learning rule spike-timing dependent plasticity (STDP). Our M-LSM is evaluated on two event-based datasets and demonstrates state-of-the-art recognition performance with superior advantages on network complexity and training cost.
期刊介绍:
Journal of Computer Science and Technology (JCST), the first English language journal in the computer field published in China, is an international forum for scientists and engineers involved in all aspects of computer science and technology to publish high quality and refereed papers. Papers reporting original research and innovative applications from all parts of the world are welcome. Papers for publication in the journal are selected through rigorous peer review, to ensure originality, timeliness, relevance, and readability. While the journal emphasizes the publication of previously unpublished materials, selected conference papers with exceptional merit that require wider exposure are, at the discretion of the editors, also published, provided they meet the journal''s peer review standards. The journal also seeks clearly written survey and review articles from experts in the field, to promote insightful understanding of the state-of-the-art and technology trends.
Topics covered by Journal of Computer Science and Technology include but are not limited to:
-Computer Architecture and Systems
-Artificial Intelligence and Pattern Recognition
-Computer Networks and Distributed Computing
-Computer Graphics and Multimedia
-Software Systems
-Data Management and Data Mining
-Theory and Algorithms
-Emerging Areas