Flexible Updating of Internet of Things Computing Functions through Optimizing Dynamic Partial Reconfiguration

IF 2.8 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
George Kornaros, Svoronos Leivadaros, Filippos Kolimbianakis
{"title":"Flexible Updating of Internet of Things Computing Functions through Optimizing Dynamic Partial Reconfiguration","authors":"George Kornaros, Svoronos Leivadaros, Filippos Kolimbianakis","doi":"10.1145/3643825","DOIUrl":null,"url":null,"abstract":"<p>With applications to become increasingly compute- and data-intensive requiring more processing power, many internet-of-things (IoT) platforms in robots, drones, and autonomous vehicles which implement neural network inference, cryptographic functions or signal processing (e.g., multimedia, communication), employ field programmable gate arrays (FPGAs). At the same time, dynamic partial reconfiguration (DPR) in modern FPGAs enable changing the function of a part of the FPGA by dynamically loading new bitstreams to the logic regions without affecting the function of other parts of the FPGA. This is especially useful, to update functions of IoT devices while in operation, for bug fixing or functionality adjustments, and more importantly when these IoT devices integrate low-cost FPGAs that can hardly realize many hard accelerators. To deal with one of the major limitations of using partial reconfiguration in IoT devices, this work introduces techniques to flexibly use DPR, namely FLEXDPR, by sharing reconfigurable partitions among different accelerator functions and by supporting virtual relocation of these functions. Experimental results on the Xilinx ZYNQ-7000 platform reveal energy and latency efficiency improvements of, on average, about 20%. Overall, the suggested approach can reduce partial reconfiguration overhead while easing the scheduler’s decisions for the deployment of hardware functions throughout time and space in a performance-conscious manner.</p>","PeriodicalId":50914,"journal":{"name":"ACM Transactions on Embedded Computing Systems","volume":"6 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Embedded Computing Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3643825","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

With applications to become increasingly compute- and data-intensive requiring more processing power, many internet-of-things (IoT) platforms in robots, drones, and autonomous vehicles which implement neural network inference, cryptographic functions or signal processing (e.g., multimedia, communication), employ field programmable gate arrays (FPGAs). At the same time, dynamic partial reconfiguration (DPR) in modern FPGAs enable changing the function of a part of the FPGA by dynamically loading new bitstreams to the logic regions without affecting the function of other parts of the FPGA. This is especially useful, to update functions of IoT devices while in operation, for bug fixing or functionality adjustments, and more importantly when these IoT devices integrate low-cost FPGAs that can hardly realize many hard accelerators. To deal with one of the major limitations of using partial reconfiguration in IoT devices, this work introduces techniques to flexibly use DPR, namely FLEXDPR, by sharing reconfigurable partitions among different accelerator functions and by supporting virtual relocation of these functions. Experimental results on the Xilinx ZYNQ-7000 platform reveal energy and latency efficiency improvements of, on average, about 20%. Overall, the suggested approach can reduce partial reconfiguration overhead while easing the scheduler’s decisions for the deployment of hardware functions throughout time and space in a performance-conscious manner.

通过优化动态局部重配置灵活更新物联网计算功能
随着需要更强处理能力的计算和数据密集型应用日益增多,机器人、无人机和自动驾驶汽车中的许多物联网(IoT)平台都采用了现场可编程门阵列(FPGA),这些平台实现了神经网络推理、加密功能或信号处理(如多媒体、通信)。与此同时,现代 FPGA 中的动态部分重新配置(DPR)功能可通过向逻辑区域动态加载新的比特流来改变 FPGA 部分的功能,而不会影响 FPGA 其他部分的功能。这对于物联网设备在运行过程中更新功能、修复错误或调整功能特别有用,更重要的是,当这些物联网设备集成了低成本 FPGA 时,很难实现许多硬加速器。为了解决在物联网设备中使用部分重新配置的主要限制之一,这项工作引入了灵活使用 DPR 的技术,即 FLEXDPR,在不同加速器功能之间共享可重新配置的分区,并支持这些功能的虚拟重定位。在赛灵思 ZYNQ-7000 平台上的实验结果表明,能量和延迟效率平均提高了约 20%。总体而言,所建议的方法可以减少部分重新配置开销,同时以注重性能的方式简化调度器在整个时间和空间内部署硬件功能的决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACM Transactions on Embedded Computing Systems
ACM Transactions on Embedded Computing Systems 工程技术-计算机:软件工程
CiteScore
3.70
自引率
0.00%
发文量
138
审稿时长
6 months
期刊介绍: The design of embedded computing systems, both the software and hardware, increasingly relies on sophisticated algorithms, analytical models, and methodologies. ACM Transactions on Embedded Computing Systems (TECS) aims to present the leading work relating to the analysis, design, behavior, and experience with embedded computing systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信