Comparison of Spin Force and Bohm Potential Force in Laser Pulse–Magnetized Spin Plasma

IF 1.5 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Qiang-Lin Hu, Yan-Chao She, Wen Hu, Jin-Peng Xiao
{"title":"Comparison of Spin Force and Bohm Potential Force in Laser Pulse–Magnetized Spin Plasma","authors":"Qiang-Lin Hu, Yan-Chao She, Wen Hu, Jin-Peng Xiao","doi":"10.7566/jpsj.93.034501","DOIUrl":null,"url":null,"abstract":"Bohm potential and electron spin are very important quantum effects in quantum plasma. In certain circumstances, they may have important influences on the interaction of electromagnetic wave and plasma. In this paper, we make a comparison of spin force and Bohm potential force in Gaussian laser pulse–magnetized quantum plasma, and clarify which force plays the main role under different conditions. It is shown that for long Gaussian pulse, which force will prevail depends on the ratio of <tex-math space=\"preserve\" version=\"MathJax\">\\(\\lambda_{p}^{2}/L_{p}^{2}\\)</tex-math> and the normalized potential <i>a</i>. And for short Gaussian pulse, if <i>a</i> &lt; 0.2, the Bohm potential force is greater than the spin force, and if <i>a</i> &gt; 0.2, the spin force will dominate the Bohm potential force.","PeriodicalId":17304,"journal":{"name":"Journal of the Physical Society of Japan","volume":"6 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Physical Society of Japan","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.7566/jpsj.93.034501","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Bohm potential and electron spin are very important quantum effects in quantum plasma. In certain circumstances, they may have important influences on the interaction of electromagnetic wave and plasma. In this paper, we make a comparison of spin force and Bohm potential force in Gaussian laser pulse–magnetized quantum plasma, and clarify which force plays the main role under different conditions. It is shown that for long Gaussian pulse, which force will prevail depends on the ratio of \(\lambda_{p}^{2}/L_{p}^{2}\) and the normalized potential a. And for short Gaussian pulse, if a < 0.2, the Bohm potential force is greater than the spin force, and if a > 0.2, the spin force will dominate the Bohm potential force.
激光脉冲磁化自旋等离子体中的自旋力与玻姆电势力的比较
玻姆势和电子自旋是量子等离子体中非常重要的量子效应。在某些情况下,它们可能会对电磁波与等离子体的相互作用产生重要影响。本文比较了高斯激光脉冲磁化量子等离子体中的自旋力和玻姆势能力,明确了在不同条件下哪种力起主要作用。结果表明,对于长高斯脉冲,哪种作用力占优势取决于\(\lambda_{p}^{2}/L_{p}^{2}\)和归一化势a的比值;而对于短高斯脉冲,如果a < 0.2,则玻姆势能力大于自旋力;如果a > 0.2,则自旋力将主导玻姆势能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
17.60%
发文量
325
审稿时长
3 months
期刊介绍: The papers published in JPSJ should treat fundamental and novel problems of physics scientifically and logically, and contribute to the development in the understanding of physics. The concrete objects are listed below. Subjects Covered JPSJ covers all the fields of physics including (but not restricted to) Elementary particles and fields Nuclear physics Atomic and Molecular Physics Fluid Dynamics Plasma physics Physics of Condensed Matter Metal, Superconductor, Semiconductor, Magnetic Materials, Dielectric Materials Physics of Nanoscale Materials Optics and Quantum Electronics Physics of Complex Systems Mathematical Physics Chemical physics Biophysics Geophysics Astrophysics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信