The generality of closed $\mathrm{G}_2$ solitons

Pub Date : 2024-01-30 DOI:10.4310/pamq.2023.v19.n6.a8
Robert L. Bryant
{"title":"The generality of closed $\\mathrm{G}_2$ solitons","authors":"Robert L. Bryant","doi":"10.4310/pamq.2023.v19.n6.a8","DOIUrl":null,"url":null,"abstract":"The local generality of the space of solitons for the Laplacian flow of closed $\\mathrm{G}_2$-structures is analyzed, and it is shown that the germs of such structures depend, up to diffeomorphism, on $16$ functions of $6$ variables (in the sense of É. Cartan). The method is to construct a natural exterior differential system whose integral manifolds describe such solitons and to show that it is involutive in Cartan’s sense, so that Cartan–Kähler theory can be applied. Meanwhile, it turns out that, for the more special case of gradient solitons, the natural exterior differential system is not involutive, and the generality of these structures remains a mystery.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/pamq.2023.v19.n6.a8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The local generality of the space of solitons for the Laplacian flow of closed $\mathrm{G}_2$-structures is analyzed, and it is shown that the germs of such structures depend, up to diffeomorphism, on $16$ functions of $6$ variables (in the sense of É. Cartan). The method is to construct a natural exterior differential system whose integral manifolds describe such solitons and to show that it is involutive in Cartan’s sense, so that Cartan–Kähler theory can be applied. Meanwhile, it turns out that, for the more special case of gradient solitons, the natural exterior differential system is not involutive, and the generality of these structures remains a mystery.
分享
查看原文
封闭 $\mathrm{G}_2$ 孤子的普遍性
分析了封闭$\mathrm{G}_2$结构的拉普拉斯流的孤子空间的局部一般性,并证明了这种结构的胚胎依赖于$6$变量的$16$函数(在É. Cartan的意义上),直到衍射。方法是构建一个自然的外部微分系统,其积分流形描述这种孤子,并证明它在 Cartan 的意义上是渐开线的,从而可以应用 Cartan-Kähler 理论。与此同时,事实证明,对于梯度孤子这种更为特殊的情况,自然外部微分系统并不是渐开的,因此这些结构的普遍性仍然是一个谜。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信