Positive scalar curvature on manifolds with boundary and their doubles

Pub Date : 2024-01-30 DOI:10.4310/pamq.2023.v19.n6.a12
Jonathan Rosenberg, Shmuel Weinberger
{"title":"Positive scalar curvature on manifolds with boundary and their doubles","authors":"Jonathan Rosenberg, Shmuel Weinberger","doi":"10.4310/pamq.2023.v19.n6.a12","DOIUrl":null,"url":null,"abstract":"This paper is about positive scalar curvature on a compact manifold $X$ with non-empty boundary $\\partial X$. In some cases, we completely answer the question of when $X$ has a positive scalar curvature metric which is a product metric near $\\partial X$, or when $X$ has a positive scalar curvature metric with positive mean curvature on the boundary, and more generally, we study the relationship between boundary conditions on $\\partial X$ for positive scalar curvature metrics on $X$ and the positive scalar curvature problem for the double $M = \\operatorname{Dbl} (X, \\partial X)$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/pamq.2023.v19.n6.a12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is about positive scalar curvature on a compact manifold $X$ with non-empty boundary $\partial X$. In some cases, we completely answer the question of when $X$ has a positive scalar curvature metric which is a product metric near $\partial X$, or when $X$ has a positive scalar curvature metric with positive mean curvature on the boundary, and more generally, we study the relationship between boundary conditions on $\partial X$ for positive scalar curvature metrics on $X$ and the positive scalar curvature problem for the double $M = \operatorname{Dbl} (X, \partial X)$.
分享
查看原文
有边界流形上的正标量曲率及其倍数
本文是关于具有非空边界 $\partial X$ 的紧凑流形 $X$ 上的正标量曲率。在某些情况下,我们完整地回答了当 $X$ 在 $\partial X$ 附近有一个乘积度量的正标量曲率度量时,或者当 $X$ 在边界上有一个平均曲率为正的正标量曲率度量时、更广义地说,我们研究 $X$ 上正标量曲率度量的 $/partial X$ 边界条件与双重 $M = \operatorname{Dbl} (X, \partial X)$ 的正标量曲率问题之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信