$RO(C_2)$-graded equivariant cohomology and classical Steenrod squares

Pub Date : 2024-01-30 DOI:10.4310/pamq.2023.v19.n6.a7
Pedro F. dos Santos, Paulo Lima-Filho
{"title":"$RO(C_2)$-graded equivariant cohomology and classical Steenrod squares","authors":"Pedro F. dos Santos, Paulo Lima-Filho","doi":"10.4310/pamq.2023.v19.n6.a7","DOIUrl":null,"url":null,"abstract":"We investigate the <i>restriction to fixed-points</i> and <i>change of coefficient functors</i> in $RO(C_2)$-graded equivariant cohomology, with applications to the equivariant cohomology of spaces with a trivial $C_2$-action for $\\underline{\\mathbb{Z}}$ and $\\underline{\\mathbb{F}_2}$ coefficients. To this end, we study the nonequivariant spectra representing these theories and the corresponding functors. In particular, we show that the $RO(C2)$-graded homology class determined by a Real submanifold $Y$ (in the sense of Atiyah) of a Real compact manifold $X$ encodes the total Steenrod square of the dual to $Y^{C_2}$ in $X^{C_2}$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/pamq.2023.v19.n6.a7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the restriction to fixed-points and change of coefficient functors in $RO(C_2)$-graded equivariant cohomology, with applications to the equivariant cohomology of spaces with a trivial $C_2$-action for $\underline{\mathbb{Z}}$ and $\underline{\mathbb{F}_2}$ coefficients. To this end, we study the nonequivariant spectra representing these theories and the corresponding functors. In particular, we show that the $RO(C2)$-graded homology class determined by a Real submanifold $Y$ (in the sense of Atiyah) of a Real compact manifold $X$ encodes the total Steenrod square of the dual to $Y^{C_2}$ in $X^{C_2}$.
分享
查看原文
RO(C_2)级等变同构与经典斯泰恩罗德方阵
我们研究了$RO(C_2)$等级等变同调中对定点和系数变化函数的限制,并将其应用于对$underline\{mathbb{Z}}$和$underline\{mathbb{F}_2}$系数具有微不足道的$C_2$作用的空间的等变同调。为此,我们研究了代表这些理论的非量谱以及相应的函数。特别是,我们证明了实紧凑流形$X$的实子流形$Y$(在阿蒂亚的意义上)决定的$RO(C2)$等级同构类编码了$X^{C_2}$中与$Y^{C_2}$对偶的总斯泰恩罗德方。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信