Hyperbolic domains in real Euclidean spaces

Pub Date : 2024-01-30 DOI:10.4310/pamq.2023.v19.n6.a4
Barbara Drinovec Drnovšek, Franc Forstnerič
{"title":"Hyperbolic domains in real Euclidean spaces","authors":"Barbara Drinovec Drnovšek, Franc Forstnerič","doi":"10.4310/pamq.2023.v19.n6.a4","DOIUrl":null,"url":null,"abstract":"The second named author and David Kalaj introduced a pseudometric on any domain in the real Euclidean space $\\mathbb{R}^n$, $n \\geq 3$, defined in terms of conformal harmonic discs, by analogy with Kobayashi’s pseudometric on complex manifolds, which is defined in terms of holomorphic discs. They showed that on the unit ball of $\\mathbb{R}^n$, this minimal metric coincides with the classical Beltrami–Cayley–Klein metric. In the present paper we investigate properties of the minimal pseudometric and give sufficient conditions for a domain to be (complete) hyperbolic, meaning that the minimal pseudometric is a (complete) metric. We show in particular that a convex domain is complete hyperbolic if and only if it does not contain any affine $2$-planes. One of our main results is that a domain with a negative minimal plurisubharmonic exhaustion function is hyperbolic, and a bounded strongly minimally convex domain is complete hyperbolic. We also prove a localization theorem for the minimal pseudometric.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/pamq.2023.v19.n6.a4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The second named author and David Kalaj introduced a pseudometric on any domain in the real Euclidean space $\mathbb{R}^n$, $n \geq 3$, defined in terms of conformal harmonic discs, by analogy with Kobayashi’s pseudometric on complex manifolds, which is defined in terms of holomorphic discs. They showed that on the unit ball of $\mathbb{R}^n$, this minimal metric coincides with the classical Beltrami–Cayley–Klein metric. In the present paper we investigate properties of the minimal pseudometric and give sufficient conditions for a domain to be (complete) hyperbolic, meaning that the minimal pseudometric is a (complete) metric. We show in particular that a convex domain is complete hyperbolic if and only if it does not contain any affine $2$-planes. One of our main results is that a domain with a negative minimal plurisubharmonic exhaustion function is hyperbolic, and a bounded strongly minimally convex domain is complete hyperbolic. We also prove a localization theorem for the minimal pseudometric.
分享
查看原文
实欧几里得空间中的双曲域
第二位作者和戴维-卡拉伊(David Kalaj)通过类比小林(Kobayashi)在复流形上的伪度量,在实欧几里得空间 $\mathbb{R}^n$, $n \geq 3$ 的任意域上引入了一种伪度量,它是以共形调和圆盘定义的,而小林在复流形上的伪度量是以全形圆盘定义的。他们证明,在 $\mathbb{R}^n$ 的单位球上,这个最小度量与经典的贝尔特拉米-凯利-克莱因度量重合。在本文中,我们研究了极小伪度量的性质,并给出了域(完全)双曲的充分条件,这意味着极小伪度量是一个(完全)度量。我们特别指出,当且仅当一个凸域不包含任何仿射 2 美元平面时,该凸域才是完全双曲的。我们的主要结果之一是,具有负最小垂次谐波穷竭函数的域是双曲的,而有界强最小凸域是完全双曲的。我们还证明了最小伪几何的定位定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信