An experimental comparison of methods for computing the numerical radius

IF 1.4 Q2 MATHEMATICS, APPLIED
Tim Mitchell , Michael L. Overton
{"title":"An experimental comparison of methods for computing the numerical radius","authors":"Tim Mitchell ,&nbsp;Michael L. Overton","doi":"10.1016/j.rinam.2024.100434","DOIUrl":null,"url":null,"abstract":"<div><p>We make an experimental comparison of methods for computing the numerical radius of an <span><math><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></math></span> complex matrix, based on two well-known characterizations, the first a nonconvex optimization problem in one real variable and the second a convex optimization problem in <span><math><mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>1</mn></mrow></math></span> real variables. We make comparisons with respect to both accuracy and computation time using publicly available software.</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"21 ","pages":"Article 100434"},"PeriodicalIF":1.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590037424000049/pdfft?md5=d346ec67764b480fbb6abfeea3aab6d1&pid=1-s2.0-S2590037424000049-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424000049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We make an experimental comparison of methods for computing the numerical radius of an n×n complex matrix, based on two well-known characterizations, the first a nonconvex optimization problem in one real variable and the second a convex optimization problem in n2+1 real variables. We make comparisons with respect to both accuracy and computation time using publicly available software.

数值半径计算方法的实验比较
我们对计算 n×n 复矩阵数值半径的方法进行了实验比较,这些方法基于两个众所周知的特征,第一个是一个实变量中的非凸优化问题,第二个是 n2+1 个实变量中的凸优化问题。我们使用可公开获得的软件,对精度和计算时间进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信