{"title":"Clustering and Geodesic Scaling of Dissimilarities on the Spherical Surface","authors":"","doi":"10.1007/s13253-023-00597-4","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Spherical embedding is an important tool in several fields of data analysis, including environmental data, spatial statistics, text mining, gene expression analysis, medical research and, in general, areas in which the geodesic distance is a relevant factor. Many data acquisition technologies are related to massive data acquisition, and these high-dimensional vectors are often normalised and transformed into spherical data. In this representation of data on spherical surfaces, multidimensional scaling plays an important role. Traditionally, the methods of clustering and representation have been combined, since the precision of the representation tends to decrease when a large number of objects are involved, which makes interpretation difficult. In this paper, we present a model that partitions objects into classes while simultaneously representing the cluster centres on a spherical surface based on geodesic distances. The model combines a partition algorithm based on the approximation of dissimilarities to geodesic distances with a representation procedure for geodesic distances. In this process, the dissimilarities are transformed in order to optimise the radius of the sphere. The efficiency of the procedure described is analysed by means of an extensive Monte Carlo experiment, and its usefulness is illustrated for real data sets. Supplementary material to this paper is provided online.</p>","PeriodicalId":56336,"journal":{"name":"Journal of Agricultural Biological and Environmental Statistics","volume":"2 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural Biological and Environmental Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13253-023-00597-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Spherical embedding is an important tool in several fields of data analysis, including environmental data, spatial statistics, text mining, gene expression analysis, medical research and, in general, areas in which the geodesic distance is a relevant factor. Many data acquisition technologies are related to massive data acquisition, and these high-dimensional vectors are often normalised and transformed into spherical data. In this representation of data on spherical surfaces, multidimensional scaling plays an important role. Traditionally, the methods of clustering and representation have been combined, since the precision of the representation tends to decrease when a large number of objects are involved, which makes interpretation difficult. In this paper, we present a model that partitions objects into classes while simultaneously representing the cluster centres on a spherical surface based on geodesic distances. The model combines a partition algorithm based on the approximation of dissimilarities to geodesic distances with a representation procedure for geodesic distances. In this process, the dissimilarities are transformed in order to optimise the radius of the sphere. The efficiency of the procedure described is analysed by means of an extensive Monte Carlo experiment, and its usefulness is illustrated for real data sets. Supplementary material to this paper is provided online.
期刊介绍:
The Journal of Agricultural, Biological and Environmental Statistics (JABES) publishes papers that introduce new statistical methods to solve practical problems in the agricultural sciences, the biological sciences (including biotechnology), and the environmental sciences (including those dealing with natural resources). Papers that apply existing methods in a novel context are also encouraged. Interdisciplinary papers and papers that illustrate the application of new and important statistical methods using real data are strongly encouraged. The journal does not normally publish papers that have a primary focus on human genetics, human health, or medical statistics.