A Spatial Mixture Model for Spaceborne Lidar Observations Over Mixed Forest and Non-forest Land Types

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Paul B. May, Andrew O. Finley, Ralph O. Dubayah
{"title":"A Spatial Mixture Model for Spaceborne Lidar Observations Over Mixed Forest and Non-forest Land Types","authors":"Paul B. May, Andrew O. Finley, Ralph O. Dubayah","doi":"10.1007/s13253-024-00600-6","DOIUrl":null,"url":null,"abstract":"<p>The Global Ecosystem Dynamics Investigation (GEDI) is a spaceborne lidar instrument that collects near-global measurements of forest structure. While expansive in scope, GEDI samples are spatially sparse and cover a small fraction of the land surface. Converting the sparse samples into spatially complete predictive maps is of practical importance for a number of ecological studies. A complicating factor is that GEDI collects measurements over forested and non-forested land alike, with no automatic labeling of the land type. Such classification is important, as it categorically influences the probability distribution of the spatial process and the ecological interpretation of the observations/predictions. We propose and implement a spatial mixture model, separating the observations and the greater spatial domain into two latent classes. The latent classes are governed by a Bernoulli spatial process, with spatial effects driven by a Gaussian process. Within each class, the process is governed by a separate spatial model, describing the unique probabilistic attributes. Model predictions take the form of scalar predictions of the GEDI observables as well as discrete labeling of the class membership. Inference is conducted through a Bayesian paradigm, yielding rich quantification of prediction and uncertainty through posterior predictive distributions. We demonstrate the method using GEDI data over Wollemi National Park, Australia, using optical data from Landsat 8 as model covariates. When compared to a single spatial model, the mixture model achieves much higher posterior predictive densities on the true value. When compared to a random forest model, a common algorithmic approach in the remote sensing community, the random forest achieves better absolute prediction accuracy for prediction locations far from observed training data locations, but at the expense of location-specific assessments of uncertainty. The unsupervised binary classifications of the mixture model appear broadly ecologically interpretable as forest and non-forest when compared to optical imagery, but further comparison to ground-truth data is required.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13253-024-00600-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The Global Ecosystem Dynamics Investigation (GEDI) is a spaceborne lidar instrument that collects near-global measurements of forest structure. While expansive in scope, GEDI samples are spatially sparse and cover a small fraction of the land surface. Converting the sparse samples into spatially complete predictive maps is of practical importance for a number of ecological studies. A complicating factor is that GEDI collects measurements over forested and non-forested land alike, with no automatic labeling of the land type. Such classification is important, as it categorically influences the probability distribution of the spatial process and the ecological interpretation of the observations/predictions. We propose and implement a spatial mixture model, separating the observations and the greater spatial domain into two latent classes. The latent classes are governed by a Bernoulli spatial process, with spatial effects driven by a Gaussian process. Within each class, the process is governed by a separate spatial model, describing the unique probabilistic attributes. Model predictions take the form of scalar predictions of the GEDI observables as well as discrete labeling of the class membership. Inference is conducted through a Bayesian paradigm, yielding rich quantification of prediction and uncertainty through posterior predictive distributions. We demonstrate the method using GEDI data over Wollemi National Park, Australia, using optical data from Landsat 8 as model covariates. When compared to a single spatial model, the mixture model achieves much higher posterior predictive densities on the true value. When compared to a random forest model, a common algorithmic approach in the remote sensing community, the random forest achieves better absolute prediction accuracy for prediction locations far from observed training data locations, but at the expense of location-specific assessments of uncertainty. The unsupervised binary classifications of the mixture model appear broadly ecologically interpretable as forest and non-forest when compared to optical imagery, but further comparison to ground-truth data is required.

Abstract Image

混交林和非林地类型上空空载激光雷达观测的空间混合模型
全球生态系统动态调查(GEDI)是一种空间激光雷达仪器,用于收集近全球范围内的森林结构测量数据。GEDI 的样本虽然范围广泛,但空间稀疏,只覆盖陆地表面的一小部分。将稀疏的样本转换成空间上完整的预测地图对许多生态研究具有实际意义。一个复杂的因素是,GEDI 对林地和非林地都进行了测量,但没有自动标记土地类型。这种分类非常重要,因为它会对空间过程的概率分布和观测/预测的生态解释产生分类影响。我们提出并实施了一种空间混合模型,将观测数据和更大的空间领域分为两个潜在类别。潜类由伯努利空间过程控制,空间效应由高斯过程驱动。在每个类别中,该过程由单独的空间模型控制,描述独特的概率属性。模型预测的形式包括对 GEDI 可观测变量的标量预测以及对类别成员资格的离散标记。推理通过贝叶斯模式进行,通过后验预测分布对预测和不确定性进行丰富的量化。我们使用澳大利亚沃勒米国家公园的 GEDI 数据演示了该方法,并将 Landsat 8 的光学数据作为模型协变量。与单一空间模型相比,混合模型对真实值的后验预测密度要高得多。随机森林模型是遥感界常用的算法方法,与随机森林模型相比,随机森林模型对远离观测训练数据位置的预测位置的绝对预测精度更高,但却牺牲了对特定位置的不确定性评估。与光学图像相比,混合模型的无监督二元分类在生态学上可大致解释为森林和非森林,但还需要与地面实况数据作进一步比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信