{"title":"On subelliptic harmonic maps with potential","authors":"Yuxin Dong, Han Luo, Weike Yu","doi":"10.1007/s10455-023-09942-9","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\((M,H,g_H;g)\\)</span> be a sub-Riemannian manifold and (<i>N</i>, <i>h</i>) be a Riemannian manifold. For a smooth map <span>\\(u: M \\rightarrow N\\)</span>, we consider the energy functional <span>\\(E_G(u) = \\frac{1}{2} \\int _M[|\\textrm{d}u_\\text {H}|^2 - 2\\,G(u)] \\textrm{d}V_M\\)</span>, where <span>\\(\\textrm{d}u_\\text {H}\\)</span> is the horizontal differential of <i>u</i>, <span>\\(G:N\\rightarrow \\mathbb {R}\\)</span> is a smooth function on <i>N</i>. The critical maps of <span>\\(E_G(u)\\)</span> are referred to as subelliptic harmonic maps with potential <i>G</i>. In this paper, we investigate the existence problem for subelliptic harmonic maps with potentials by a subelliptic heat flow. Assuming that the target Riemannian manifold has nonpositive sectional curvature and the potential <i>G</i> satisfies various suitable conditions, we prove some Eells–Sampson-type existence results when the source manifold is either a step-2 sub-Riemannian manifold or a step-<i>r</i> sub-Riemannian manifold whose sub-Riemannian structure comes from a tense Riemannian foliation.</p></div>","PeriodicalId":8268,"journal":{"name":"Annals of Global Analysis and Geometry","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Global Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-023-09942-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let \((M,H,g_H;g)\) be a sub-Riemannian manifold and (N, h) be a Riemannian manifold. For a smooth map \(u: M \rightarrow N\), we consider the energy functional \(E_G(u) = \frac{1}{2} \int _M[|\textrm{d}u_\text {H}|^2 - 2\,G(u)] \textrm{d}V_M\), where \(\textrm{d}u_\text {H}\) is the horizontal differential of u, \(G:N\rightarrow \mathbb {R}\) is a smooth function on N. The critical maps of \(E_G(u)\) are referred to as subelliptic harmonic maps with potential G. In this paper, we investigate the existence problem for subelliptic harmonic maps with potentials by a subelliptic heat flow. Assuming that the target Riemannian manifold has nonpositive sectional curvature and the potential G satisfies various suitable conditions, we prove some Eells–Sampson-type existence results when the source manifold is either a step-2 sub-Riemannian manifold or a step-r sub-Riemannian manifold whose sub-Riemannian structure comes from a tense Riemannian foliation.
期刊介绍:
This journal examines global problems of geometry and analysis as well as the interactions between these fields and their application to problems of theoretical physics. It contributes to an enlargement of the international exchange of research results in the field.
The areas covered in Annals of Global Analysis and Geometry include: global analysis, differential geometry, complex manifolds and related results from complex analysis and algebraic geometry, Lie groups, Lie transformation groups and harmonic analysis, variational calculus, applications of differential geometry and global analysis to problems of theoretical physics.