Cell spheroid viscoelasticity is deformation-dependent

Ruben C. Boot, Anouk van der Net, Christos Gogou, Pranav Mehta, Dimphna H. Meijer, Gijsje H. Koenderink, Pouyan E. Boukany
{"title":"Cell spheroid viscoelasticity is deformation-dependent","authors":"Ruben C. Boot, Anouk van der Net, Christos Gogou, Pranav Mehta, Dimphna H. Meijer, Gijsje H. Koenderink, Pouyan E. Boukany","doi":"arxiv-2401.17155","DOIUrl":null,"url":null,"abstract":"Tissue surface tension influences cell sorting and tissue fusion. Earlier\nmechanical studies suggest that multicellular spheroids actively reinforce\ntheir surface tension with applied force. Here we study this open question\nthrough high-throughput microfluidic micropipette aspiration measurements on\ncell spheroids to identify the role of force duration and cell contractility.\nWe find that larger spheroid deformations lead to faster cellular retraction\nonce the pressure is released, regardless of the applied force and cellular\ncontractility. These new insights demonstrate that spheroid viscoelasticity is\ndeformation-dependent and challenge whether surface tension truly reinforces.","PeriodicalId":501572,"journal":{"name":"arXiv - QuanBio - Tissues and Organs","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Tissues and Organs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2401.17155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Tissue surface tension influences cell sorting and tissue fusion. Earlier mechanical studies suggest that multicellular spheroids actively reinforce their surface tension with applied force. Here we study this open question through high-throughput microfluidic micropipette aspiration measurements on cell spheroids to identify the role of force duration and cell contractility. We find that larger spheroid deformations lead to faster cellular retraction once the pressure is released, regardless of the applied force and cellular contractility. These new insights demonstrate that spheroid viscoelasticity is deformation-dependent and challenge whether surface tension truly reinforces.
细胞球体的粘弹性取决于形变
组织表面张力影响细胞分选和组织融合。早期的力学研究表明,多细胞球体在外力作用下会主动增强其表面张力。在这里,我们通过对细胞球体进行高通量微流体微吸管吸液测量来研究这一未决问题,以确定作用力持续时间和细胞收缩力的作用。我们发现,无论作用力和细胞收缩力如何,一旦压力释放,较大的球体变形会导致细胞更快地回缩。这些新发现证明了球体的粘弹性与形变有关,并对表面张力是否真正起到加固作用提出了挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信