Generalized essential spectra involving the class of g-g-Riesz operators

Pub Date : 2024-01-30 DOI:10.1515/gmj-2024-2002
Imen Ferjani, Omaima Kchaou, Bilel Krichen
{"title":"Generalized essential spectra involving the class of g-g-Riesz operators","authors":"Imen Ferjani, Omaima Kchaou, Bilel Krichen","doi":"10.1515/gmj-2024-2002","DOIUrl":null,"url":null,"abstract":"In this paper, we explore the spectral properties of unbounded generalized Fredholm operators acting on a non-reflexive Banach space <jats:italic>X</jats:italic>. The results are formulated in terms of some topological conditions made on <jats:italic>X</jats:italic> or on its dual <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>X</m:mi> <m:mo>*</m:mo> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2002_eq_0247.png\" /> <jats:tex-math>{X^{*}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. In addition, we introduce the concept of the so-called g-g-Riesz linear operators as an extension of Riesz operators. The obtained results are used to discuss the incidence of the behavior of generalized essential spectra. Furthermore, a relation between the generalized essential spectrum and the left (resp. the right) essential spectrum by means of g-Riesz perturbation is provided.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2024-2002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we explore the spectral properties of unbounded generalized Fredholm operators acting on a non-reflexive Banach space X. The results are formulated in terms of some topological conditions made on X or on its dual X * {X^{*}} . In addition, we introduce the concept of the so-called g-g-Riesz linear operators as an extension of Riesz operators. The obtained results are used to discuss the incidence of the behavior of generalized essential spectra. Furthermore, a relation between the generalized essential spectrum and the left (resp. the right) essential spectrum by means of g-Riesz perturbation is provided.
分享
查看原文
涉及 g-g-Riesz 算子类的广义本质谱
在本文中,我们探讨了作用于非反射巴拿赫空间 X 的无界广义弗雷德霍姆算子的谱性质。结果是根据对 X 或其对偶 X * {X^{*}} 的一些拓扑条件得出的。 .此外,我们还引入了所谓 g-g-Riesz 线性算子的概念,作为 Riesz 算子的扩展。所获得的结果被用来讨论广义本质谱行为的发生。此外,我们还通过 g-Riesz 扰动提供了广义本质谱与左(或右)本质谱之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信