On module categories related to $Sp(N-1) \subset Sl(N)$

IF 0.5 4区 数学 Q3 MATHEMATICS
Hans Wenzl
{"title":"On module categories related to $Sp(N-1) \\subset Sl(N)$","authors":"Hans Wenzl","doi":"10.4310/pamq.2023.v19.n5.a8","DOIUrl":null,"url":null,"abstract":"$\\def\\End{\\operatorname{End}}$$\\def\\Rep{\\operatorname{Rep}}$$\\def\\sl{\\mathfrak{sl}}$Let $V = \\mathbb{C}^N$ with $N$ odd.We construct a $q$-deformation of $\\End_{Sp(N-1)}(V^{\\otimes n})$ which contains $\\End_{U_q \\sl_N} (V^{\\otimes n})$. It is a quotient of an abstract two-variable algebra which is defined by adding one more generator to the generators of the Hecke algebras $H_n$. These results suggest the existence of module categories of $\\Rep(U_q \\sl_N)$ which may not come from already known coideal subalgebras of $ U_q \\sl_N$. We moreover indicate how this can be used to construct module categories of the associated fusion tensor categories as well as subfactors, along the lines of previous work for inclusions $Sp(N) \\subset SL(N)$.","PeriodicalId":54526,"journal":{"name":"Pure and Applied Mathematics Quarterly","volume":"14 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pure and Applied Mathematics Quarterly","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/pamq.2023.v19.n5.a8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

$\def\End{\operatorname{End}}$$\def\Rep{\operatorname{Rep}}$$\def\sl{\mathfrak{sl}}$Let $V = \mathbb{C}^N$ with $N$ odd.We construct a $q$-deformation of $\End_{Sp(N-1)}(V^{\otimes n})$ which contains $\End_{U_q \sl_N} (V^{\otimes n})$. It is a quotient of an abstract two-variable algebra which is defined by adding one more generator to the generators of the Hecke algebras $H_n$. These results suggest the existence of module categories of $\Rep(U_q \sl_N)$ which may not come from already known coideal subalgebras of $ U_q \sl_N$. We moreover indicate how this can be used to construct module categories of the associated fusion tensor categories as well as subfactors, along the lines of previous work for inclusions $Sp(N) \subset SL(N)$.
论与$Sp(N-1) 子集Sl(N)$相关的模块类别
$\def\End{operatorname{End}}$\def\Rep\operatorname{Rep}}$\def\sl{mathfrak{sl}}$Let $V = \mathbb{C}^N$,其中 $N$ 为奇数。我们构建一个 $q$ 变形的 $End_{Sp(N-1)}(V^{otimes n})$,它包含 $End_{U_q \sl_N} (V^{otimes n})$。它是抽象双变量代数的商,而抽象双变量代数的定义是在赫克代数 $H_n$ 的生成子上再加一个生成子。这些结果表明了 $\Rep(U_q \sl_N)$ 的模块范畴的存在,而这些范畴可能并非来自已知的 $ U_q \sl_N$ 的共ideal子代数。此外,我们还指出了如何利用这一点来构造相关融合张量类别的模块类别以及子因子,这与之前针对内含$Sp(N) \subset SL(N)$ 所做的工作是一致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
30
审稿时长
>12 weeks
期刊介绍: Publishes high-quality, original papers on all fields of mathematics. To facilitate fruitful interchanges between mathematicians from different regions and specialties, and to effectively disseminate new breakthroughs in mathematics, the journal welcomes well-written submissions from all significant areas of mathematics. The editors are committed to promoting the highest quality of mathematical scholarship.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信