M. I. Aghajanov, H. S. Harutyunyan, A. Kh. Khamperyan, G. A. Karapetyan, K. S. Fereshetyan, K. B. Yenkoyan
{"title":"Ferroptosis in the Pathogenesis of Alzheimer’s Disease: The New Evidence for Validation of FAB Model","authors":"M. I. Aghajanov, H. S. Harutyunyan, A. Kh. Khamperyan, G. A. Karapetyan, K. S. Fereshetyan, K. B. Yenkoyan","doi":"10.1134/s1819712423040049","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Alzheimer’s disease is an age-associated progressive disorder, characterized by neurodegeneration and following cognitive decline. Several pathological alterations are implicated in its pathogenesis, hence etiology is still poorly understood. Ferroptosis is an alternative form of cell death, driven by intracellular accumulation of iron with subsequent reactive oxygen species formation, which damages membranes, proteins, and DNA, causing cell death. The imbalance in iron homeostasis is rapidly gaining weight as a neurodegeneration cause, increasing the need to develop in vivo and in vitro models to understand the role of ferroptosis in Alzheimer’s disease pathogenesis. This review focuses on the mechanisms of ferroptosis in the pathogenesis of AD, giving a detailed overview of the available in vivo and in vitro methods and their applications, as well as describing in detail the ferrous amyloid buthionine (FAB) model.</p>","PeriodicalId":19119,"journal":{"name":"Neurochemical Journal","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurochemical Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1134/s1819712423040049","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Alzheimer’s disease is an age-associated progressive disorder, characterized by neurodegeneration and following cognitive decline. Several pathological alterations are implicated in its pathogenesis, hence etiology is still poorly understood. Ferroptosis is an alternative form of cell death, driven by intracellular accumulation of iron with subsequent reactive oxygen species formation, which damages membranes, proteins, and DNA, causing cell death. The imbalance in iron homeostasis is rapidly gaining weight as a neurodegeneration cause, increasing the need to develop in vivo and in vitro models to understand the role of ferroptosis in Alzheimer’s disease pathogenesis. This review focuses on the mechanisms of ferroptosis in the pathogenesis of AD, giving a detailed overview of the available in vivo and in vitro methods and their applications, as well as describing in detail the ferrous amyloid buthionine (FAB) model.
期刊介绍:
Neurochemical Journal (Neirokhimiya) provides a source for the communication of the latest findings in all areas of contemporary neurochemistry and other fields of relevance (including molecular biology, biochemistry, physiology, neuroimmunology, pharmacology) in an afford to expand our understanding of the functions of the nervous system. The journal presents papers on functional neurochemistry, nervous system receptors, neurotransmitters, myelin, chromaffin granules and other components of the nervous system, as well as neurophysiological and clinical aspects, behavioral reactions, etc. Relevant topics include structure and function of the nervous system proteins, neuropeptides, nucleic acids, nucleotides, lipids, and other biologically active components.
The journal is devoted to the rapid publication of regular papers containing the results of original research, reviews highlighting major developments in neurochemistry, short communications, new experimental studies that use neurochemical methodology, descriptions of new methods of value for neurochemistry, theoretical material suggesting novel principles and approaches to neurochemical problems, presentations of new hypotheses and significant findings, discussions, chronicles of congresses, meetings, and conferences with short presentations of the most sensational and timely reports, information on the activity of the Russian and International Neurochemical Societies, as well as advertisements of reagents and equipment.