Study on Deformation Response Law of Surrounding Rock in Solid Backfill Mining Stope

IF 1.5 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY
Xingping Lai, Longquan Wu, Jiantao Cao, Yuhang Tu
{"title":"Study on Deformation Response Law of Surrounding Rock in Solid Backfill Mining Stope","authors":"Xingping Lai, Longquan Wu, Jiantao Cao, Yuhang Tu","doi":"10.1155/2024/8880234","DOIUrl":null,"url":null,"abstract":"To fully control the roof and surface and reduce the ecological damage caused by mining, it is necessary to understand the deformation response law of the surrounding rock in solid backfill mining. The similarities and differences of overburden movement characteristics between natural caving method and solid backfill method are analyzed and compared by means of on-site investigation and monitoring, theoretical derivation and analysis, numerical simulation and effect verification. The control mechanism of backfill mining on the roof is clarified, and the relationship between stope roof displacement and support pressure of backfill body is established. Furthermore, the mechanical conditions of immediate roof in equilibrium state during backfill mining are established. The FLAC<sup>3D</sup> simulation indicates that the solid backfill mining face has a concentrated stress peak located 15 m ahead of the coal wall. Within the range from 0 to 5 m, the abutment pressure is reduced gradually. However, within the range from 5 to 15 m, the abutment pressure is increased evidently. The stress concentration is located 35 m behind the working face. With continuous backfilling of the goaf, the maximum displacement occurs in the backfill body near the working face. The total deformation of the surrounding rock in the goaf is reduced by 58%. The total deformation of coal wall is reduced by ∼37.5%. The subsidence coefficient is reduced from 0.59 to 0.013 by using the backfill mining technology. The research results provide theoretical guidance and reference for roof control and ecological protection of backfill mining.","PeriodicalId":7242,"journal":{"name":"Advances in Civil Engineering","volume":"22 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/8880234","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

To fully control the roof and surface and reduce the ecological damage caused by mining, it is necessary to understand the deformation response law of the surrounding rock in solid backfill mining. The similarities and differences of overburden movement characteristics between natural caving method and solid backfill method are analyzed and compared by means of on-site investigation and monitoring, theoretical derivation and analysis, numerical simulation and effect verification. The control mechanism of backfill mining on the roof is clarified, and the relationship between stope roof displacement and support pressure of backfill body is established. Furthermore, the mechanical conditions of immediate roof in equilibrium state during backfill mining are established. The FLAC3D simulation indicates that the solid backfill mining face has a concentrated stress peak located 15 m ahead of the coal wall. Within the range from 0 to 5 m, the abutment pressure is reduced gradually. However, within the range from 5 to 15 m, the abutment pressure is increased evidently. The stress concentration is located 35 m behind the working face. With continuous backfilling of the goaf, the maximum displacement occurs in the backfill body near the working face. The total deformation of the surrounding rock in the goaf is reduced by 58%. The total deformation of coal wall is reduced by ∼37.5%. The subsidence coefficient is reduced from 0.59 to 0.013 by using the backfill mining technology. The research results provide theoretical guidance and reference for roof control and ecological protection of backfill mining.
固体回填采矿斜坡围岩变形响应规律研究
为了全面控制顶板和地表,减少采矿对生态环境的破坏,有必要了解固体回填采矿中围岩的变形响应规律。通过现场调查与监测、理论推导与分析、数值模拟与效果验证,分析比较了自然崩落法与固体回填法覆岩运动特征的异同。明确了回填开采对顶板的控制机理,建立了斜坡顶板位移与回填体支护压力的关系。此外,还确定了回填开采过程中直接顶板在平衡状态下的力学条件。FLAC3D 模拟结果表明,固体回填开采工作面的集中应力峰值位于煤壁前方 15 米处。在 0 至 5 米范围内,基底压力逐渐减小。但在 5 至 15 米范围内,基底压力明显增大。应力集中点位于工作面后 35 米处。随着围岩的连续回填,最大位移出现在工作面附近的回填体上。煤层围岩的总变形量减少了 58%。煤壁的总变形量减少了 37.5%。采用回填开采技术,沉陷系数由 0.59 降至 0.013。研究成果为回填开采的顶板控制和生态保护提供了理论指导和参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Civil Engineering
Advances in Civil Engineering Engineering-Civil and Structural Engineering
CiteScore
4.00
自引率
5.60%
发文量
612
审稿时长
15 weeks
期刊介绍: Advances in Civil Engineering publishes papers in all areas of civil engineering. The journal welcomes submissions across a range of disciplines, and publishes both theoretical and practical studies. Contributions from academia and from industry are equally encouraged. Subject areas include (but are by no means limited to): -Structural mechanics and engineering- Structural design and construction management- Structural analysis and computational mechanics- Construction technology and implementation- Construction materials design and engineering- Highway and transport engineering- Bridge and tunnel engineering- Municipal and urban engineering- Coastal, harbour and offshore engineering-- Geotechnical and earthquake engineering Engineering for water, waste, energy, and environmental applications- Hydraulic engineering and fluid mechanics- Surveying, monitoring, and control systems in construction- Health and safety in a civil engineering setting. Advances in Civil Engineering also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信