{"title":"On the paving size of a subfactor","authors":"Sora Popin","doi":"10.4310/pamq.2023.v19.n5.a6","DOIUrl":null,"url":null,"abstract":"Given an inclusion of $\\mathrm{II}_1$ factors $N \\subset M$ with finite Jones index, $[M:N] \\lt \\infty$, we prove that for any $F \\subset M$ finite and $\\varepsilon \\gt 0$, there exists a partition of $1$ with $r \\leq \\lceil 16 \\varepsilon^{-2} \\rceil \\cdot {\\lceil 4 [M:N] \\varepsilon}^{-2} \\rceil$ projections $p_1, \\dotsc , p_r \\in N$ such that ${\\lVert \\sum^r_{i=1} p_i xp_i - E_{N^\\prime \\cap M} (x) \\rVert} \\leq \\varepsilon {\\lVert x - E_{N^\\prime \\cap M} (x) \\rVert}, \\forall x \\in F$ (where $\\lceil \\beta \\rceil$ denotes the least integer $\\geq \\beta$). We consider a series of related invariants for $N \\subset M$, generically called <i>paving size.</i>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/pamq.2023.v19.n5.a6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Given an inclusion of $\mathrm{II}_1$ factors $N \subset M$ with finite Jones index, $[M:N] \lt \infty$, we prove that for any $F \subset M$ finite and $\varepsilon \gt 0$, there exists a partition of $1$ with $r \leq \lceil 16 \varepsilon^{-2} \rceil \cdot {\lceil 4 [M:N] \varepsilon}^{-2} \rceil$ projections $p_1, \dotsc , p_r \in N$ such that ${\lVert \sum^r_{i=1} p_i xp_i - E_{N^\prime \cap M} (x) \rVert} \leq \varepsilon {\lVert x - E_{N^\prime \cap M} (x) \rVert}, \forall x \in F$ (where $\lceil \beta \rceil$ denotes the least integer $\geq \beta$). We consider a series of related invariants for $N \subset M$, generically called paving size.