Yannick Guedes-Bonthonneau, Colin Guillarmou, Malo Jézéquel
{"title":"Scattering rigidity for analytic metrics","authors":"Yannick Guedes-Bonthonneau, Colin Guillarmou, Malo Jézéquel","doi":"10.4310/cjm.2024.v12.n1.a2","DOIUrl":null,"url":null,"abstract":"For analytic negatively curved Riemannian manifolds with analytic strictly convex boundary, we show that the scattering map for the geodesic flow determines the manifold up to isometry. In particular, one recovers both the topology and the metric. More generally our result holds in the analytic category under the no conjugate point and hyperbolic trapped set assumptions.","PeriodicalId":48573,"journal":{"name":"Cambridge Journal of Mathematics","volume":"11 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cambridge Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cjm.2024.v12.n1.a2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
For analytic negatively curved Riemannian manifolds with analytic strictly convex boundary, we show that the scattering map for the geodesic flow determines the manifold up to isometry. In particular, one recovers both the topology and the metric. More generally our result holds in the analytic category under the no conjugate point and hyperbolic trapped set assumptions.