Jonathan H. Brown, Adam H. Fuller, David R. Pitts, Sarah A. Reznikoff
{"title":"Regular Ideals, Ideal Intersections, and Quotients","authors":"Jonathan H. Brown, Adam H. Fuller, David R. Pitts, Sarah A. Reznikoff","doi":"10.1007/s00020-023-02753-4","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(B \\subseteq A\\)</span> be an inclusion of <span>\\(C^*\\)</span>-algebras. We study the relationship between the regular ideals of <i>B</i> and regular ideals of <i>A</i>. We show that if <span>\\(B \\subseteq A\\)</span> is a regular <span>\\(C^*\\)</span>-inclusion and there is a faithful invariant conditional expectation from <i>A</i> onto <i>B</i>, then there is an isomorphism between the lattice of regular ideals of <i>A</i> and invariant regular ideals of <i>B</i>. We study properties of inclusions preserved under quotients by regular ideals. This includes showing that if <span>\\(D \\subseteq A\\)</span> is a Cartan inclusion and <i>J</i> is a regular ideal in <i>A</i>, then <span>\\(D/(J\\cap D)\\)</span> is a Cartan subalgebra of <i>A</i>/<i>J</i>. We provide a description of regular ideals in the reduced crossed product of a C<span>\\(^*\\)</span>-algebra by a discrete group.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00020-023-02753-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let \(B \subseteq A\) be an inclusion of \(C^*\)-algebras. We study the relationship between the regular ideals of B and regular ideals of A. We show that if \(B \subseteq A\) is a regular \(C^*\)-inclusion and there is a faithful invariant conditional expectation from A onto B, then there is an isomorphism between the lattice of regular ideals of A and invariant regular ideals of B. We study properties of inclusions preserved under quotients by regular ideals. This includes showing that if \(D \subseteq A\) is a Cartan inclusion and J is a regular ideal in A, then \(D/(J\cap D)\) is a Cartan subalgebra of A/J. We provide a description of regular ideals in the reduced crossed product of a C\(^*\)-algebra by a discrete group.