Benjamin Beach, Robert Burlacu, Andreas Bärmann, Lukas Hager, Robert Hildebrand
{"title":"Enhancements of discretization approaches for non-convex mixed-integer quadratically constrained quadratic programming: Part I","authors":"Benjamin Beach, Robert Burlacu, Andreas Bärmann, Lukas Hager, Robert Hildebrand","doi":"10.1007/s10589-023-00543-7","DOIUrl":null,"url":null,"abstract":"<p>We study mixed-integer programming (MIP) relaxation techniques for the solution of non-convex mixed-integer quadratically constrained quadratic programs (MIQCQPs). We present MIP relaxation methods for non-convex continuous variable products. In this paper, we consider MIP relaxations based on separable reformulation. The main focus is the introduction of the enhanced separable MIP relaxation for non-convex quadratic products of the form <span>\\(z=xy\\)</span>, called <i>hybrid separable</i> (HybS). Additionally, we introduce a logarithmic MIP relaxation for univariate quadratic terms, called <i>sawtooth relaxation</i>, based on Beach (Beach in J Glob Optim 84:869–912, 2022). We combine the latter with HybS and existing separable reformulations to derive MIP relaxations of MIQCQPs. We provide a comprehensive theoretical analysis of these techniques, underlining the theoretical advantages of HybS compared to its predecessors. We perform a broad computational study to demonstrate the effectiveness of the enhanced MIP relaxation in terms of producing tight dual bounds for MIQCQPs. In Part II, we study MIP relaxations that extend the MIP relaxation <i>normalized multiparametric disaggregation technique</i> (NMDT) (Castro in J Glob Optim 64:765–784, 2015) and present a computational study which also includes the MIP relaxations from this work and compares them with a state-of-the-art of MIQCQP solvers.</p>","PeriodicalId":55227,"journal":{"name":"Computational Optimization and Applications","volume":"62 4 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Optimization and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10589-023-00543-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We study mixed-integer programming (MIP) relaxation techniques for the solution of non-convex mixed-integer quadratically constrained quadratic programs (MIQCQPs). We present MIP relaxation methods for non-convex continuous variable products. In this paper, we consider MIP relaxations based on separable reformulation. The main focus is the introduction of the enhanced separable MIP relaxation for non-convex quadratic products of the form \(z=xy\), called hybrid separable (HybS). Additionally, we introduce a logarithmic MIP relaxation for univariate quadratic terms, called sawtooth relaxation, based on Beach (Beach in J Glob Optim 84:869–912, 2022). We combine the latter with HybS and existing separable reformulations to derive MIP relaxations of MIQCQPs. We provide a comprehensive theoretical analysis of these techniques, underlining the theoretical advantages of HybS compared to its predecessors. We perform a broad computational study to demonstrate the effectiveness of the enhanced MIP relaxation in terms of producing tight dual bounds for MIQCQPs. In Part II, we study MIP relaxations that extend the MIP relaxation normalized multiparametric disaggregation technique (NMDT) (Castro in J Glob Optim 64:765–784, 2015) and present a computational study which also includes the MIP relaxations from this work and compares them with a state-of-the-art of MIQCQP solvers.
期刊介绍:
Computational Optimization and Applications is a peer reviewed journal that is committed to timely publication of research and tutorial papers on the analysis and development of computational algorithms and modeling technology for optimization. Algorithms either for general classes of optimization problems or for more specific applied problems are of interest. Stochastic algorithms as well as deterministic algorithms will be considered. Papers that can provide both theoretical analysis, along with carefully designed computational experiments, are particularly welcome.
Topics of interest include, but are not limited to the following:
Large Scale Optimization,
Unconstrained Optimization,
Linear Programming,
Quadratic Programming Complementarity Problems, and Variational Inequalities,
Constrained Optimization,
Nondifferentiable Optimization,
Integer Programming,
Combinatorial Optimization,
Stochastic Optimization,
Multiobjective Optimization,
Network Optimization,
Complexity Theory,
Approximations and Error Analysis,
Parametric Programming and Sensitivity Analysis,
Parallel Computing, Distributed Computing, and Vector Processing,
Software, Benchmarks, Numerical Experimentation and Comparisons,
Modelling Languages and Systems for Optimization,
Automatic Differentiation,
Applications in Engineering, Finance, Optimal Control, Optimal Design, Operations Research,
Transportation, Economics, Communications, Manufacturing, and Management Science.