Linear and bilinear Fourier multipliers on Orlicz modulation spaces

Oscar Blasco, Serap Öztop, Rüya Üster
{"title":"Linear and bilinear Fourier multipliers on Orlicz modulation spaces","authors":"Oscar Blasco, Serap Öztop, Rüya Üster","doi":"10.1007/s00605-023-01937-9","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(\\Phi _i, \\Psi _i\\)</span> be Young functions, <span>\\(\\omega _i\\)</span> be weights and <span>\\(M^{\\Phi _i,\\Psi _i}_{\\omega _i}(\\mathbb {R} ^{d})\\)</span> be the corresponding Orlicz modulation spaces for <span>\\(i=1,2,3\\)</span>. We consider linear (respect. bilinear) multipliers on <span>\\(\\mathbb {R} ^{d}\\)</span>, that is bounded measurable functions <span>\\(m(\\xi )\\)</span> (respect. <span>\\(m(\\xi ,\\eta )\\)</span>) on <span>\\(\\mathbb {R} ^{d}\\)</span> (respect. <span>\\(\\mathbb {R} ^{2d}\\)</span>) such that </p><span>$$\\begin{aligned} T_m(f)(x)=\\int _{\\mathbb {R} ^{d}}{\\hat{f}}(\\xi ) m(\\xi )e^{2\\pi i \\langle \\xi , x\\rangle }d\\xi \\end{aligned}$$</span><p>(respect. </p><span>$$\\begin{aligned} B_m(f_1,f_2)(x)=\\int _{\\mathbb {R} ^{d}}\\int _{\\mathbb {R} ^{d}} \\hat{f_1}(\\xi ) \\hat{f_2}(\\eta )m(\\xi ,\\eta )e^{2\\pi i \\langle \\xi +\\eta , x\\rangle }d\\xi d\\eta \\end{aligned}$$</span><p>define a bounded linear (respect. bilinear) operator from <span>\\(M^{\\Phi _1,\\Psi _1}_{\\omega _1}(\\mathbb {R} ^{d})\\)</span> to <span>\\(M^{\\Phi _2,\\Psi _2}_{\\omega _2}(\\mathbb {R} ^{d})\\)</span> (respect. <span>\\(M^{\\Phi _1,\\Psi _1}_{\\omega _1}(\\mathbb {R} ^{d})\\times M^{\\Phi _2,\\Psi _2}_{\\omega _2}(\\mathbb {R} ^{d})\\)</span> to <span>\\(M^{\\Phi _3,\\Psi _3}_{\\omega _3}(\\mathbb {R} ^{d})\\)</span>). In this paper we study some properties of these spaces and give methods to generate linear and bilinear multipliers between Orlicz modulation spaces.\n</p>","PeriodicalId":18913,"journal":{"name":"Monatshefte für Mathematik","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monatshefte für Mathematik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00605-023-01937-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(\Phi _i, \Psi _i\) be Young functions, \(\omega _i\) be weights and \(M^{\Phi _i,\Psi _i}_{\omega _i}(\mathbb {R} ^{d})\) be the corresponding Orlicz modulation spaces for \(i=1,2,3\). We consider linear (respect. bilinear) multipliers on \(\mathbb {R} ^{d}\), that is bounded measurable functions \(m(\xi )\) (respect. \(m(\xi ,\eta )\)) on \(\mathbb {R} ^{d}\) (respect. \(\mathbb {R} ^{2d}\)) such that

$$\begin{aligned} T_m(f)(x)=\int _{\mathbb {R} ^{d}}{\hat{f}}(\xi ) m(\xi )e^{2\pi i \langle \xi , x\rangle }d\xi \end{aligned}$$

(respect.

$$\begin{aligned} B_m(f_1,f_2)(x)=\int _{\mathbb {R} ^{d}}\int _{\mathbb {R} ^{d}} \hat{f_1}(\xi ) \hat{f_2}(\eta )m(\xi ,\eta )e^{2\pi i \langle \xi +\eta , x\rangle }d\xi d\eta \end{aligned}$$

define a bounded linear (respect. bilinear) operator from \(M^{\Phi _1,\Psi _1}_{\omega _1}(\mathbb {R} ^{d})\) to \(M^{\Phi _2,\Psi _2}_{\omega _2}(\mathbb {R} ^{d})\) (respect. \(M^{\Phi _1,\Psi _1}_{\omega _1}(\mathbb {R} ^{d})\times M^{\Phi _2,\Psi _2}_{\omega _2}(\mathbb {R} ^{d})\) to \(M^{\Phi _3,\Psi _3}_{\omega _3}(\mathbb {R} ^{d})\)). In this paper we study some properties of these spaces and give methods to generate linear and bilinear multipliers between Orlicz modulation spaces.

奥利兹调制空间上的线性和双线性傅里叶乘法器
让 \(\Phi _i, \Psi _i\) 是杨函数,\(\omega _i\) 是权重,\(M^{Phi _i,\Psi _i}_{\omega _i}(\mathbb {R} ^{d})\)是与\(i=1,2,3\)对应的奥利茨调制空间。我们考虑在 \(\mathbb {R} ^{d}\)上的线性(双线性)乘法器,即有界可测函数 \(m(\xi )\) (尊重.\是在(\mathbb {R} ^{d}\)上的有界可测函数(respect.\這樣 $$\begin{aligned}T_m(f)(x)=int _{\mathbb {R} ^{d}}{hat{f}}(\xi ) m(\xi )e^{2\pi i \langle \xi , x\rangle }d\xi \end{aligned}$$(尊重.$$\begin{aligned}B_m(f_1,f_2)(x)=int _{\mathbb {R} ^{d}}int _\mathbb {R} ^{d}}\hat{f_1}(\xi ) \hat{f_2}(\eta )m(\xi ,\eta )e^{2\pi i \langle \xi +\eta , x\rangle }d\xi d\eta \end{aligned}$$define a bounded linear (respect.雙線性)算子從 \(M^{\Phi _1,\Psi _1}_{\omega _1}(\mathbb {R} ^{d})\) 到 \(M^{\Phi _2,\Psi _2}_{\omega _2}(\mathbb {R} ^{d})\) (尊重.\(M^{Phi _1,\Psi _1}_{\omega _1}(\mathbb {R} ^{d})\times M^{Phi _2,\Psi _2}_{\omega _2}(\mathbb {R} ^{d})\) to\(M^{Phi _3,\Psi _3}_{\omega _3}(\mathbb {R} ^{d})\).本文研究了这些空间的一些性质,并给出了在奥立兹调制空间之间生成线性和双线性乘数的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信