{"title":"Singularity properties of Lorentzian Darboux surfaces in Lorentz–Minkowski spacetime","authors":"Yanlin Li, Xuelian Jiang, Zhigang Wang","doi":"10.1007/s40687-023-00420-z","DOIUrl":null,"url":null,"abstract":"<p>In this paper, by virtue of unfolding theory in singularity theory, we investigate the singularities of five special surfaces generated by a regular curve lying on a spacelike hypersurface in Lorentz–Minkowski 4-space. Using two kinds of extended Lorentzian Darboux frames along the curve as tools, five new invariants are obtained to characterize the singularities of five special surfaces and their geometric meanings are discussed in detail. In addition, some dual relationships between a normal curve of the original curve and five surfaces are revealed under the meanings of Legendrian duality.</p>","PeriodicalId":48561,"journal":{"name":"Research in the Mathematical Sciences","volume":"14 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in the Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40687-023-00420-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, by virtue of unfolding theory in singularity theory, we investigate the singularities of five special surfaces generated by a regular curve lying on a spacelike hypersurface in Lorentz–Minkowski 4-space. Using two kinds of extended Lorentzian Darboux frames along the curve as tools, five new invariants are obtained to characterize the singularities of five special surfaces and their geometric meanings are discussed in detail. In addition, some dual relationships between a normal curve of the original curve and five surfaces are revealed under the meanings of Legendrian duality.
期刊介绍:
Research in the Mathematical Sciences is an international, peer-reviewed hybrid journal covering the full scope of Theoretical Mathematics, Applied Mathematics, and Theoretical Computer Science. The Mission of the Journal is to publish high-quality original articles that make a significant contribution to the research areas of both theoretical and applied mathematics and theoretical computer science.
This journal is an efficient enterprise where the editors play a central role in soliciting the best research papers, and where editorial decisions are reached in a timely fashion. Research in the Mathematical Sciences does not have a length restriction and encourages the submission of longer articles in which more complex and detailed analysis and proofing of theorems is required. It also publishes shorter research communications (Letters) covering nascent research in some of the hottest areas of mathematical research. This journal will publish the highest quality papers in all of the traditional areas of applied and theoretical areas of mathematics and computer science, and it will actively seek to publish seminal papers in the most emerging and interdisciplinary areas in all of the mathematical sciences. Research in the Mathematical Sciences wishes to lead the way by promoting the highest quality research of this type.