{"title":"Circumcenter extension maps for non-positively curved spaces","authors":"Merlin Incerti-Medici","doi":"10.1007/s10711-023-00881-0","DOIUrl":null,"url":null,"abstract":"<p>We show that every cross ratio preserving homeomorphism between boundaries of Hadamard manifolds extends to a map, called circumcenter extension, provided that the manifolds satisfy certain visibility conditions. We describe regions on which this map is Hölder-continuous. Furthermore, we show that this map is a rough isometry, whenever the manifolds admit cocompact group actions by isometries and we improve previously known quasi-isometry constants, provided by Biswas, in the case of 2-dimensional <span>\\(\\mathrm {CAT(-1)}\\)</span> manifolds. Finally, we provide a sufficient condition for this map to be an isometry in the case of Hadamard surfaces.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10711-023-00881-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We show that every cross ratio preserving homeomorphism between boundaries of Hadamard manifolds extends to a map, called circumcenter extension, provided that the manifolds satisfy certain visibility conditions. We describe regions on which this map is Hölder-continuous. Furthermore, we show that this map is a rough isometry, whenever the manifolds admit cocompact group actions by isometries and we improve previously known quasi-isometry constants, provided by Biswas, in the case of 2-dimensional \(\mathrm {CAT(-1)}\) manifolds. Finally, we provide a sufficient condition for this map to be an isometry in the case of Hadamard surfaces.