An Eulerian finite element method for the linearized Navier–Stokes problem in an evolving domain

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED
Michael Neilan, Maxim Olshanskii
{"title":"An Eulerian finite element method for the linearized Navier–Stokes problem in an evolving domain","authors":"Michael Neilan, Maxim Olshanskii","doi":"10.1093/imanum/drad105","DOIUrl":null,"url":null,"abstract":"The paper addresses an error analysis of an Eulerian finite element method used for solving a linearized Navier–Stokes problem in a time-dependent domain. In this study, the domain’s evolution is assumed to be known and independent of the solution to the problem at hand. The numerical method employed in the study combines a standard backward differentiation formula-type time-stepping procedure with a geometrically unfitted finite element discretization technique. Additionally, Nitsche’s method is utilized to enforce the boundary conditions. The paper presents a convergence estimate for several velocity–pressure elements that are inf-sup stable. The estimate demonstrates optimal order convergence in the energy norm for the velocity component and a scaled $L^{2}(H^{1})$-type norm for the pressure component.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"34 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/drad105","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The paper addresses an error analysis of an Eulerian finite element method used for solving a linearized Navier–Stokes problem in a time-dependent domain. In this study, the domain’s evolution is assumed to be known and independent of the solution to the problem at hand. The numerical method employed in the study combines a standard backward differentiation formula-type time-stepping procedure with a geometrically unfitted finite element discretization technique. Additionally, Nitsche’s method is utilized to enforce the boundary conditions. The paper presents a convergence estimate for several velocity–pressure elements that are inf-sup stable. The estimate demonstrates optimal order convergence in the energy norm for the velocity component and a scaled $L^{2}(H^{1})$-type norm for the pressure component.
演化域中线性化纳维-斯托克斯问题的欧拉有限元法
本文对用于求解随时间变化的域中线性化纳维-斯托克斯问题的欧拉有限元方法进行了误差分析。在本研究中,假定域的演变是已知的,且与当前问题的解无关。研究中采用的数值方法结合了标准反向微分公式型时间步进程序和几何非拟合有限元离散化技术。此外,还采用了尼采方法来强制执行边界条件。论文提出了几种具有 inf-sup 稳定性的速度-压力元素的收敛估计值。估算结果表明,速度分量在能量规范下具有最优阶收敛性,压力分量在缩放 $L^{2}(H^{1})$ 型规范下具有最优阶收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信