Deep learning for protein structure prediction and design-progress and applications.

IF 8.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Molecular Systems Biology Pub Date : 2024-03-01 Epub Date: 2024-01-30 DOI:10.1038/s44320-024-00016-x
Jürgen Jänes, Pedro Beltrao
{"title":"Deep learning for protein structure prediction and design-progress and applications.","authors":"Jürgen Jänes, Pedro Beltrao","doi":"10.1038/s44320-024-00016-x","DOIUrl":null,"url":null,"abstract":"<p><p>Proteins are the key molecular machines that orchestrate all biological processes of the cell. Most proteins fold into three-dimensional shapes that are critical for their function. Studying the 3D shape of proteins can inform us of the mechanisms that underlie biological processes in living cells and can have practical applications in the study of disease mutations or the discovery of novel drug treatments. Here, we review the progress made in sequence-based prediction of protein structures with a focus on applications that go beyond the prediction of single monomer structures. This includes the application of deep learning methods for the prediction of structures of protein complexes, different conformations, the evolution of protein structures and the application of these methods to protein design. These developments create new opportunities for research that will have impact across many areas of biomedical research.</p>","PeriodicalId":18906,"journal":{"name":"Molecular Systems Biology","volume":" ","pages":"162-169"},"PeriodicalIF":8.5000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10912668/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44320-024-00016-x","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Proteins are the key molecular machines that orchestrate all biological processes of the cell. Most proteins fold into three-dimensional shapes that are critical for their function. Studying the 3D shape of proteins can inform us of the mechanisms that underlie biological processes in living cells and can have practical applications in the study of disease mutations or the discovery of novel drug treatments. Here, we review the progress made in sequence-based prediction of protein structures with a focus on applications that go beyond the prediction of single monomer structures. This includes the application of deep learning methods for the prediction of structures of protein complexes, different conformations, the evolution of protein structures and the application of these methods to protein design. These developments create new opportunities for research that will have impact across many areas of biomedical research.

用于蛋白质结构预测和设计的深度学习--进展与应用。
蛋白质是协调细胞所有生物过程的关键分子机器。大多数蛋白质折叠成对其功能至关重要的三维形状。研究蛋白质的三维形状可以让我们了解活细胞中生物过程的基本机制,在研究疾病突变或发现新型药物治疗方法方面也有实际应用。在此,我们回顾了基于序列的蛋白质结构预测所取得的进展,重点关注单个单体结构预测以外的应用。这包括应用深度学习方法预测蛋白质复合物结构、不同构象、蛋白质结构进化以及将这些方法应用于蛋白质设计。这些发展为研究创造了新的机遇,将对生物医学研究的许多领域产生影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Systems Biology
Molecular Systems Biology 生物-生化与分子生物学
CiteScore
18.50
自引率
1.00%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Systems biology is a field that aims to understand complex biological systems by studying their components and how they interact. It is an integrative discipline that seeks to explain the properties and behavior of these systems. Molecular Systems Biology is a scholarly journal that publishes top-notch research in the areas of systems biology, synthetic biology, and systems medicine. It is an open access journal, meaning that its content is freely available to readers, and it is peer-reviewed to ensure the quality of the published work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信