Marlo K Thompson, Nidhi Sharma, Andrea Thorn, Aishwarya Prakash
{"title":"Deciphering the crystal structure of a novel nanobody against the NEIL1 DNA glycosylase.","authors":"Marlo K Thompson, Nidhi Sharma, Andrea Thorn, Aishwarya Prakash","doi":"10.1107/S205979832400038X","DOIUrl":null,"url":null,"abstract":"<p><p>Nanobodies (VHHs) are single-domain antibodies with three antigenic CDR regions and are used in diverse scientific applications. Here, an ∼14 kDa nanobody (A5) specific for the endonuclease VIII (Nei)-like 1 or NEIL1 DNA glycosylase involved in the first step of the base-excision repair pathway was crystallized and its structure was determined to 2.1 Å resolution. The crystals posed challenges due to potential twinning and anisotropic diffraction. Despite inconclusive twinning indicators, reprocessing in an orthorhombic setting and molecular replacement in space group P2<sub>1</sub>2<sub>1</sub>2 enabled the successful modeling of 96% of residues in the asymmetric unit, with final R<sub>work</sub> and R<sub>free</sub> values of 0.199 and 0.229, respectively.</p>","PeriodicalId":7116,"journal":{"name":"Acta Crystallographica. Section D, Structural Biology","volume":" ","pages":"137-146"},"PeriodicalIF":2.6000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10836396/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica. Section D, Structural Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1107/S205979832400038X","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Nanobodies (VHHs) are single-domain antibodies with three antigenic CDR regions and are used in diverse scientific applications. Here, an ∼14 kDa nanobody (A5) specific for the endonuclease VIII (Nei)-like 1 or NEIL1 DNA glycosylase involved in the first step of the base-excision repair pathway was crystallized and its structure was determined to 2.1 Å resolution. The crystals posed challenges due to potential twinning and anisotropic diffraction. Despite inconclusive twinning indicators, reprocessing in an orthorhombic setting and molecular replacement in space group P21212 enabled the successful modeling of 96% of residues in the asymmetric unit, with final Rwork and Rfree values of 0.199 and 0.229, respectively.
期刊介绍:
Acta Crystallographica Section D welcomes the submission of articles covering any aspect of structural biology, with a particular emphasis on the structures of biological macromolecules or the methods used to determine them.
Reports on new structures of biological importance may address the smallest macromolecules to the largest complex molecular machines. These structures may have been determined using any structural biology technique including crystallography, NMR, cryoEM and/or other techniques. The key criterion is that such articles must present significant new insights into biological, chemical or medical sciences. The inclusion of complementary data that support the conclusions drawn from the structural studies (such as binding studies, mass spectrometry, enzyme assays, or analysis of mutants or other modified forms of biological macromolecule) is encouraged.
Methods articles may include new approaches to any aspect of biological structure determination or structure analysis but will only be accepted where they focus on new methods that are demonstrated to be of general applicability and importance to structural biology. Articles describing particularly difficult problems in structural biology are also welcomed, if the analysis would provide useful insights to others facing similar problems.