{"title":"Enantioselective Recognition of Functional Organic Molecules in Water by Biomimetic Macrocyclic Hosts","authors":"Xiran Yang*, and , Wei Jiang, ","doi":"10.1021/jacs.3c11492","DOIUrl":null,"url":null,"abstract":"<p >Enantioselective recognition of functional organic molecules in water is routine in nature but remains a formidable challenge for synthetic hosts. Here, we reported two pairs of chiral naphthotubes with chiral centers located in the neighborhood of the inward-directing amide groups. These naphthotubes, with a chiral twisted cavity, show highly enantioselective recognition in water to a wide scope of organic molecules (90 chiral guests). The highest enantioselectivity of 34 was achieved with neotame. Small differences between all of the noncovalent interactions shielded in the hydrophobic cavity were revealed to be responsible for the enantioselective recognition in water, which is different from the traditional views. Moreover, these hosts can differentiate the analogues of aspartame using fluorescence spectroscopy. These chiral naphthotubes have made unprecedented achievements in enantioselective recognition, providing the basis for their applications in chiral analysis and separations.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"146 6","pages":"3900–3909"},"PeriodicalIF":14.4000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.3c11492","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Enantioselective recognition of functional organic molecules in water is routine in nature but remains a formidable challenge for synthetic hosts. Here, we reported two pairs of chiral naphthotubes with chiral centers located in the neighborhood of the inward-directing amide groups. These naphthotubes, with a chiral twisted cavity, show highly enantioselective recognition in water to a wide scope of organic molecules (90 chiral guests). The highest enantioselectivity of 34 was achieved with neotame. Small differences between all of the noncovalent interactions shielded in the hydrophobic cavity were revealed to be responsible for the enantioselective recognition in water, which is different from the traditional views. Moreover, these hosts can differentiate the analogues of aspartame using fluorescence spectroscopy. These chiral naphthotubes have made unprecedented achievements in enantioselective recognition, providing the basis for their applications in chiral analysis and separations.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.