Mathematical Models for Adsorption Capacity and Percent Removal of Heavy Metals from Water Using Stat-Ease 360

Abdulhalim Musa Abubakar, Eva Schieferstein, Irnis Azura Zakarya, Baudilio Coto, Chantawan Noisri, Adegoke Taiwo Mobolaji, Hijaz Ahmad
{"title":"Mathematical Models for Adsorption Capacity and Percent Removal of Heavy Metals from Water Using Stat-Ease 360","authors":"Abdulhalim Musa Abubakar, Eva Schieferstein, Irnis Azura Zakarya, Baudilio Coto, Chantawan Noisri, Adegoke Taiwo Mobolaji, Hijaz Ahmad","doi":"10.61552/jme.2024.01.001","DOIUrl":null,"url":null,"abstract":"Heavy metal removal using adsorbent materials like watermelon rind, as investigated herein, will ensure a safe drinking water for consumption. For the first time, mathematical models taking A = adsorbent dosage, B = contact time and C = initial concentration as input variables were developed using Stat-Ease 360 design of experiment (DOE) tool for adsorption capacity (R1) and percent removal of heavy metals including, arsenic, cadmium, chromium, copper and lead (R2) in water, as two sole output variables. The models generated based on existing experimental observations (A, B, C) can be used to predict the responses or outputs of the adsorption process, especially looking at their respective satisfactory statistical performance parameters obtained. Several 3D surface and contour plots reveal the optimal factor combination for peak response performance for a particular metallic contaminant in the water. Optimal values for arsenic removal are 0.1g A, 120 min B, 3.12 mg/g R1 and 100% R2. Those of other metals present are as follows: 0.1g A, 60 min B, 0.17 mg/L C, 144.75 mg/g R1 and 85.78% R2 for cadmium; 0.1-1.2g A, 0<B≤120 min, 0.028 mg/L C, 215 mg/g R1 and 85.53% R2 for chromium; 0.1-1.2g A, 0<B≤120 min, 0.041 mg/L C, 275 mg/g R1 and 80% R2 for copper and; 0.1-1.2g A, 0<B≤120 min, 0.029 mg/L C, 205 mg/g R1 and 83.42% R2 for lead. This study falls short of many heavy metals such as zinc, nickel, cobalt, antimony, iron and mercury removal used to test the effect of other factors like pH, presence of co-existing ions, temperature and sorbent particle size for their adsorption performance.","PeriodicalId":516759,"journal":{"name":"Journal of Materials and Engineering","volume":"43 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.61552/jme.2024.01.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Heavy metal removal using adsorbent materials like watermelon rind, as investigated herein, will ensure a safe drinking water for consumption. For the first time, mathematical models taking A = adsorbent dosage, B = contact time and C = initial concentration as input variables were developed using Stat-Ease 360 design of experiment (DOE) tool for adsorption capacity (R1) and percent removal of heavy metals including, arsenic, cadmium, chromium, copper and lead (R2) in water, as two sole output variables. The models generated based on existing experimental observations (A, B, C) can be used to predict the responses or outputs of the adsorption process, especially looking at their respective satisfactory statistical performance parameters obtained. Several 3D surface and contour plots reveal the optimal factor combination for peak response performance for a particular metallic contaminant in the water. Optimal values for arsenic removal are 0.1g A, 120 min B, 3.12 mg/g R1 and 100% R2. Those of other metals present are as follows: 0.1g A, 60 min B, 0.17 mg/L C, 144.75 mg/g R1 and 85.78% R2 for cadmium; 0.1-1.2g A, 0
使用 Stat-Ease 360 建立水中重金属吸附容量和去除百分比的数学模型
本文所研究的利用西瓜皮等吸附材料去除重金属的方法将确保饮用水的安全饮用。利用 Stat-Ease 360 实验设计(DOE)工具,首次建立了以 A = 吸附剂用量、B = 接触时间和 C = 初始浓度为输入变量的数学模型,将吸附容量(R1)和水中重金属(包括砷、镉、铬、铜和铅)的去除率(R2)作为两个唯一的输出变量。根据现有的实验观察结果(A、B、C)生成的模型可用于预测吸附过程的反应或输出,特别是看它们各自获得的令人满意的统计性能参数。一些三维表面图和等高线图揭示了针对水中特定金属污染物的峰值响应性能的最佳因子组合。砷去除的最佳值为 0.1g A、120 分钟 B、3.12 mg/g R1 和 100% R2。其他金属的最佳值如下镉的最佳去除率为 0.1g A,60 分钟 B,0.17 mg/L C,144.75 mg/g R1 和 85.78% R2;铬的最佳去除率为 0.1-1.2g A,0
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信