Jinhao Wang, Jizhuang Hui, Yaqian Zhang, Tao Zhou, Kai Ding
{"title":"Multitarget detection of assembly parts based on improved YOLOv7","authors":"Jinhao Wang, Jizhuang Hui, Yaqian Zhang, Tao Zhou, Kai Ding","doi":"10.1117/12.3014468","DOIUrl":null,"url":null,"abstract":"Aiming at multi-target detection in complex human-robot collaborative assembly scenes, an improved YOLOv7 algorithm is proposed. Specifically, the Wise-Intersection over Union(Wise-IoU) loss function and the BiFormer attention module are introduced to improve the recognition performance of small assembly parts. Taking a worm-gear decelerator as an example, a dataset for assembly parts recognition is made. By training the improved network in the self-made dataset, the mAP@.5 value is increased by 3.25 % and the average total loss is reduced by 0.02365. The experiment results show that the improved YOLOv7 algorithm can achieve multi-assembly parts detection in collaborative assembly.","PeriodicalId":516634,"journal":{"name":"International Conference on Algorithm, Imaging Processing and Machine Vision (AIPMV 2023)","volume":" 8","pages":"1296927 - 1296927-6"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Algorithm, Imaging Processing and Machine Vision (AIPMV 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3014468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Aiming at multi-target detection in complex human-robot collaborative assembly scenes, an improved YOLOv7 algorithm is proposed. Specifically, the Wise-Intersection over Union(Wise-IoU) loss function and the BiFormer attention module are introduced to improve the recognition performance of small assembly parts. Taking a worm-gear decelerator as an example, a dataset for assembly parts recognition is made. By training the improved network in the self-made dataset, the mAP@.5 value is increased by 3.25 % and the average total loss is reduced by 0.02365. The experiment results show that the improved YOLOv7 algorithm can achieve multi-assembly parts detection in collaborative assembly.