Naming conventions-based multi-label and multi-task learning for fine-grained classification

Qinbang Zhou, Kezhi Zhang, Feng Yue, Zhaoliang Zhang, Hui Yu
{"title":"Naming conventions-based multi-label and multi-task learning for fine-grained classification","authors":"Qinbang Zhou, Kezhi Zhang, Feng Yue, Zhaoliang Zhang, Hui Yu","doi":"10.1117/12.3014589","DOIUrl":null,"url":null,"abstract":"This paper proposes a fine-grained image classification architecture using multi-task learning. The structure of the fine-grained classification network uses ResNest as the feature extraction layer of the multi-task hard parameter sharing mode with the fine-grained category label regression branch based on multi-hot naming conventions and classification branch based on cross-entropy loss with one-hot encoding. The coupling between the two branches enables multi-task classification through hyperparameter weighting. Subsequently, comparison and ablation experiments were performed on the public datasets of Stanford Cars, CUB-200-2011 and FGVC-Aircraft. The experimental result shows multi-label regression, multi-task learning and label smoothing can effectively improve the generalization of the model and increase the inter-class distance of the previous layer at the network output terminal, and reduces the intra-class distance.","PeriodicalId":516634,"journal":{"name":"International Conference on Algorithm, Imaging Processing and Machine Vision (AIPMV 2023)","volume":" 30","pages":"129691D - 129691D-7"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Algorithm, Imaging Processing and Machine Vision (AIPMV 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3014589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a fine-grained image classification architecture using multi-task learning. The structure of the fine-grained classification network uses ResNest as the feature extraction layer of the multi-task hard parameter sharing mode with the fine-grained category label regression branch based on multi-hot naming conventions and classification branch based on cross-entropy loss with one-hot encoding. The coupling between the two branches enables multi-task classification through hyperparameter weighting. Subsequently, comparison and ablation experiments were performed on the public datasets of Stanford Cars, CUB-200-2011 and FGVC-Aircraft. The experimental result shows multi-label regression, multi-task learning and label smoothing can effectively improve the generalization of the model and increase the inter-class distance of the previous layer at the network output terminal, and reduces the intra-class distance.
基于命名规则的多标签和多任务学习,实现精细分类
本文提出了一种使用多任务学习的细粒度图像分类架构。细粒度分类网络的结构采用 ResNest 作为多任务硬参数共享模式的特征提取层,其细粒度类别标签回归分支基于多热命名约定,分类分支基于交叉熵损失与单热编码。两个分支之间的耦合可通过超参数加权实现多任务分类。随后,在斯坦福汽车、CUB-200-2011 和 FGVC-Aircraft 公开数据集上进行了对比和消融实验。实验结果表明,多标签回归、多任务学习和标签平滑可以有效提高模型的泛化能力,增加网络输出端的前一层的类间距离,并减小类内距离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信