Using the petiole of the miriti palm for the core of a small wind turbine blade

IF 1.9 4区 工程技术 Q4 ENERGY & FUELS
I. D. S. Gomes, J. R. P. Vaz, D. Wood
{"title":"Using the petiole of the miriti palm for the core of a small wind turbine blade","authors":"I. D. S. Gomes, J. R. P. Vaz, D. Wood","doi":"10.1063/5.0185573","DOIUrl":null,"url":null,"abstract":"In many small wind turbine blades, the interior space between laminate skins is filled by a material core. The mechanical properties of the core are much less important than its density, which must be low to reduce the moment of inertia as high inertia increases both the starting time of the turbine and the gyroscopic loads on the blades. In this paper, we use, for the first time, the petiole of the miriti palm (PMP) as the core of four small blades, in order to analyze its effect on turbine starting performance. PMP is abundant in the Amazon region and harvesting it does not destroy the palm because the petiole regrows; therefore, harvesting is fully sustainable and may well have a major role in increasing the sustainability on wind turbine manufacturing. We consider the benefits of using the easily worked petiole for the core in terms of manufacturing, as demonstrated by the construction of a 0.598 m blade. PMP is less dense on average than alternative materials, such as expanded polystyrene and balsa wood. The starting performance is an important issue for small wind turbines. It is evaluated using a quasi-steady model, in which blade element momentum theory is coupled to Newton's Second Law. The low density of the small blade made using petiole of the miriti reduces the starting time by 10% when compared with expanded polystyrene and 42% when compared to balsa wood.","PeriodicalId":16953,"journal":{"name":"Journal of Renewable and Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Renewable and Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0185573","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

In many small wind turbine blades, the interior space between laminate skins is filled by a material core. The mechanical properties of the core are much less important than its density, which must be low to reduce the moment of inertia as high inertia increases both the starting time of the turbine and the gyroscopic loads on the blades. In this paper, we use, for the first time, the petiole of the miriti palm (PMP) as the core of four small blades, in order to analyze its effect on turbine starting performance. PMP is abundant in the Amazon region and harvesting it does not destroy the palm because the petiole regrows; therefore, harvesting is fully sustainable and may well have a major role in increasing the sustainability on wind turbine manufacturing. We consider the benefits of using the easily worked petiole for the core in terms of manufacturing, as demonstrated by the construction of a 0.598 m blade. PMP is less dense on average than alternative materials, such as expanded polystyrene and balsa wood. The starting performance is an important issue for small wind turbines. It is evaluated using a quasi-steady model, in which blade element momentum theory is coupled to Newton's Second Law. The low density of the small blade made using petiole of the miriti reduces the starting time by 10% when compared with expanded polystyrene and 42% when compared to balsa wood.
用米利提棕榈叶柄做小型风力涡轮机叶片的核心
在许多小型风力涡轮机叶片中,层压蒙皮之间的内部空间由材料核心填充。核心材料的机械性能远不如其密度重要,因为高惯性会增加涡轮机的启动时间和叶片上的陀螺载荷,所以核心材料的密度必须较低,以降低惯性矩。在本文中,我们首次使用米里提棕榈(PMP)的叶柄作为四个小型叶片的核心,以分析其对涡轮机启动性能的影响。PMP 在亚马逊地区非常丰富,采收它不会破坏棕榈树,因为叶柄会重新生长;因此,采收是完全可持续的,而且很可能在提高风力涡轮机制造的可持续性方面发挥重要作用。我们从制造 0.598 米长的叶片的角度考虑了使用易于加工的叶柄作为核心的好处。与发泡聚苯乙烯和轻木等替代材料相比,PMP 的平均密度较低。起动性能是小型风力涡轮机的一个重要问题。我们使用准稳态模型对其进行了评估,在该模型中,叶片元素动量理论与牛顿第二定律相结合。与发泡聚苯乙烯相比,使用米里提叶柄制作的小型叶片密度低,启动时间缩短了 10%,与轻木相比缩短了 42%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Renewable and Sustainable Energy
Journal of Renewable and Sustainable Energy ENERGY & FUELS-ENERGY & FUELS
CiteScore
4.30
自引率
12.00%
发文量
122
审稿时长
4.2 months
期刊介绍: The Journal of Renewable and Sustainable Energy (JRSE) is an interdisciplinary, peer-reviewed journal covering all areas of renewable and sustainable energy relevant to the physical science and engineering communities. The interdisciplinary approach of the publication ensures that the editors draw from researchers worldwide in a diverse range of fields. Topics covered include: Renewable energy economics and policy Renewable energy resource assessment Solar energy: photovoltaics, solar thermal energy, solar energy for fuels Wind energy: wind farms, rotors and blades, on- and offshore wind conditions, aerodynamics, fluid dynamics Bioenergy: biofuels, biomass conversion, artificial photosynthesis Distributed energy generation: rooftop PV, distributed fuel cells, distributed wind, micro-hydrogen power generation Power distribution & systems modeling: power electronics and controls, smart grid Energy efficient buildings: smart windows, PV, wind, power management Energy conversion: flexoelectric, piezoelectric, thermoelectric, other technologies Energy storage: batteries, supercapacitors, hydrogen storage, other fuels Fuel cells: proton exchange membrane cells, solid oxide cells, hybrid fuel cells, other Marine and hydroelectric energy: dams, tides, waves, other Transportation: alternative vehicle technologies, plug-in technologies, other Geothermal energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信