Short video preloading via domain knowledge assisted deep reinforcement learning

IF 7.5 2区 计算机科学 Q1 TELECOMMUNICATIONS
Yuhong Xie , Yuan Zhang , Tao Lin , Zipeng Pan , Si-Ze Qian , Bo Jiang , Jinyao Yan
{"title":"Short video preloading via domain knowledge assisted deep reinforcement learning","authors":"Yuhong Xie ,&nbsp;Yuan Zhang ,&nbsp;Tao Lin ,&nbsp;Zipeng Pan ,&nbsp;Si-Ze Qian ,&nbsp;Bo Jiang ,&nbsp;Jinyao Yan","doi":"10.1016/j.dcan.2024.01.006","DOIUrl":null,"url":null,"abstract":"<div><div>Short video applications like TikTok have seen significant growth in recent years. One common behavior of users on these platforms is watching and swiping through videos, which can lead to a significant waste of bandwidth. As such, an important challenge in short video streaming is to design a preloading algorithm that can effectively decide which videos to download, at what bitrate, and when to pause the download in order to reduce bandwidth waste while improving the Quality of Experience (QoE). However, designing such an algorithm is non-trivial, especially when considering the conflicting objectives of minimizing bandwidth waste and maximizing QoE. In this paper, we propose an end-to-end <strong>D</strong>eep reinforcement learning framework with <strong>A</strong>ction <strong>M</strong>asking called DAM that leverages domain knowledge to learn an optimal policy for short video preloading. To achieve this, we introduce a reward shaping technique to minimize bandwidth waste and use action masking to make actions more reasonable, reduce playback rebuffering, and accelerate the training process. We have conducted extensive experiments using real-world video datasets and network traces including 4G/WiFi/5G. Our results show that DAM improves the QoE score by 3.73%-11.28% compared to state-of-the-art algorithms, and achieves an average bandwidth waste of only 10.27%-12.07%, outperforming all baseline methods.</div></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":"10 6","pages":"Pages 1826-1836"},"PeriodicalIF":7.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352864824000166","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Short video applications like TikTok have seen significant growth in recent years. One common behavior of users on these platforms is watching and swiping through videos, which can lead to a significant waste of bandwidth. As such, an important challenge in short video streaming is to design a preloading algorithm that can effectively decide which videos to download, at what bitrate, and when to pause the download in order to reduce bandwidth waste while improving the Quality of Experience (QoE). However, designing such an algorithm is non-trivial, especially when considering the conflicting objectives of minimizing bandwidth waste and maximizing QoE. In this paper, we propose an end-to-end Deep reinforcement learning framework with Action Masking called DAM that leverages domain knowledge to learn an optimal policy for short video preloading. To achieve this, we introduce a reward shaping technique to minimize bandwidth waste and use action masking to make actions more reasonable, reduce playback rebuffering, and accelerate the training process. We have conducted extensive experiments using real-world video datasets and network traces including 4G/WiFi/5G. Our results show that DAM improves the QoE score by 3.73%-11.28% compared to state-of-the-art algorithms, and achieves an average bandwidth waste of only 10.27%-12.07%, outperforming all baseline methods.
通过领域知识辅助深度强化学习进行短视频预加载
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Digital Communications and Networks
Digital Communications and Networks Computer Science-Hardware and Architecture
CiteScore
12.80
自引率
5.10%
发文量
915
审稿时长
30 weeks
期刊介绍: Digital Communications and Networks is a prestigious journal that emphasizes on communication systems and networks. We publish only top-notch original articles and authoritative reviews, which undergo rigorous peer-review. We are proud to announce that all our articles are fully Open Access and can be accessed on ScienceDirect. Our journal is recognized and indexed by eminent databases such as the Science Citation Index Expanded (SCIE) and Scopus. In addition to regular articles, we may also consider exceptional conference papers that have been significantly expanded. Furthermore, we periodically release special issues that focus on specific aspects of the field. In conclusion, Digital Communications and Networks is a leading journal that guarantees exceptional quality and accessibility for researchers and scholars in the field of communication systems and networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信