Micron-scale FETs of fully epitaxial perovskite oxides using chemical etching

Jaehyeok Lee, Juhan Kim, Jongkyoung Ko, Kookrin Char
{"title":"Micron-scale FETs of fully epitaxial perovskite oxides using chemical etching","authors":"Jaehyeok Lee,&nbsp;Juhan Kim,&nbsp;Jongkyoung Ko,&nbsp;Kookrin Char","doi":"10.1016/j.mtquan.2024.100002","DOIUrl":null,"url":null,"abstract":"<div><p>Advent of high mobility perovskite oxide semiconductor BaSnO<sub>3</sub> (BSO) has enabled all-perovskite oxide heterostructures such as 2DEGs and FETs. To date all-perovskite oxide device demonstrations have been focused on finding and integrating the compatible perovskite dielectric oxides such as polar LaInO<sub>3</sub> and LaScO<sub>3</sub> and non-polar BaHfO<sub>3</sub> and SrHfO<sub>3</sub>. For these demonstrations the length scale of BSO-based heterostructure devices has been about 100 µm, primarily due to the use of stencil masks for patterning. In order to further reduce the length scale, we employed a top-down approach using both photolithography and chemical etching techniques to pattern FETs made entirely of perovskite oxide materials: Ba<sub>0.997</sub>La<sub>0.003</sub>SnO<sub>3</sub> channel layer, degenerately doped Ba<sub>0.96</sub>La<sub>0.04</sub>SnO<sub>3</sub> contact layer, and SrHfO<sub>3</sub> gate oxide layer. FETs of 3 µm channel length were fabricated using hydrofluoric acid and aqua regia as etchants. The FET exhibits a mobility of 38.8 cm²/Vs, an on/off ratio of 5.06 × 10<sup>7</sup>, and a drain current density of 6.05 × 10<sup>−2</sup> mA/μm, consistent with our expectation. These findings demonstrate the feasibility of patterning BSO through photolithography and chemical etching while maintaining the subsequent epitaxial growth, suggesting that BSO can be employed in a broader range of applications as well as for more precise studies of its intrinsic properties.</p></div>","PeriodicalId":100894,"journal":{"name":"Materials Today Quantum","volume":"1 ","pages":"Article 100002"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2950257824000027/pdfft?md5=36e35cb0410eea2738483ff45377d6e7&pid=1-s2.0-S2950257824000027-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Quantum","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950257824000027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Advent of high mobility perovskite oxide semiconductor BaSnO3 (BSO) has enabled all-perovskite oxide heterostructures such as 2DEGs and FETs. To date all-perovskite oxide device demonstrations have been focused on finding and integrating the compatible perovskite dielectric oxides such as polar LaInO3 and LaScO3 and non-polar BaHfO3 and SrHfO3. For these demonstrations the length scale of BSO-based heterostructure devices has been about 100 µm, primarily due to the use of stencil masks for patterning. In order to further reduce the length scale, we employed a top-down approach using both photolithography and chemical etching techniques to pattern FETs made entirely of perovskite oxide materials: Ba0.997La0.003SnO3 channel layer, degenerately doped Ba0.96La0.04SnO3 contact layer, and SrHfO3 gate oxide layer. FETs of 3 µm channel length were fabricated using hydrofluoric acid and aqua regia as etchants. The FET exhibits a mobility of 38.8 cm²/Vs, an on/off ratio of 5.06 × 107, and a drain current density of 6.05 × 10−2 mA/μm, consistent with our expectation. These findings demonstrate the feasibility of patterning BSO through photolithography and chemical etching while maintaining the subsequent epitaxial growth, suggesting that BSO can be employed in a broader range of applications as well as for more precise studies of its intrinsic properties.

利用化学蚀刻技术实现全外延包晶氧化物的微米级场效应晶体管
高迁移率包晶氧化物半导体 BaSnO3(BSO)的问世,使得全包晶氧化物异质结构(如二维电子元件和场效应晶体管)成为可能。迄今为止,全包晶石氧化物器件演示的重点是寻找和集成兼容的包晶石介电氧化物,如极性的 LaInO3 和 LaScO3 以及非极性的 BaHfO3 和 SrHfO3。在这些演示中,基于 BSO 的异质结构器件的长度尺度约为 100 µm,这主要是由于使用了模板掩模进行图案化。为了进一步缩小长度范围,我们采用了一种自上而下的方法,同时使用光刻技术和化学蚀刻技术,对完全由包晶石氧化物材料制成的场效应晶体管进行图案化:这些材料包括:Ba0.997La0.003SnO3 沟道层、退变掺杂的 Ba0.96La0.04SnO3 接触层和 SrHfO3 栅极氧化物层。使用氢氟酸和王水作为蚀刻剂,制造出了沟道长度为 3 µm 的场效应晶体管。场效应晶体管的迁移率为 38.8 cm²/Vs,导通/关断比为 5.06 × 107,漏极电流密度为 6.05 × 10-2 mA/μm,与我们的预期一致。这些发现证明了通过光刻和化学蚀刻对 BSO 进行图案化,同时保持后续外延生长的可行性,表明 BSO 可以应用于更广泛的领域,并能对其内在特性进行更精确的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信