Privacy-preserving human activity sensing: A survey

IF 3.2 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Yanni Yang , Pengfei Hu , Jiaxing Shen , Haiming Cheng , Zhenlin An , Xiulong Liu
{"title":"Privacy-preserving human activity sensing: A survey","authors":"Yanni Yang ,&nbsp;Pengfei Hu ,&nbsp;Jiaxing Shen ,&nbsp;Haiming Cheng ,&nbsp;Zhenlin An ,&nbsp;Xiulong Liu","doi":"10.1016/j.hcc.2024.100204","DOIUrl":null,"url":null,"abstract":"<div><p>With the prevalence of various sensors and smart devices in people’s daily lives, numerous types of information are being sensed. While using such information provides critical and convenient services, we are gradually exposing every piece of our behavior and activities. Researchers are aware of the privacy risks and have been working on preserving privacy while sensing human activities. This survey reviews existing studies on privacy-preserving human activity sensing. We first introduce the sensors and captured private information related to human activities. We then propose a taxonomy to structure the methods for preserving private information from two aspects: individual and collaborative activity sensing. For each of the two aspects, the methods are classified into three levels: signal, algorithm, and system. Finally, we discuss the open challenges and provide future directions.</p></div>","PeriodicalId":100605,"journal":{"name":"High-Confidence Computing","volume":"4 1","pages":"Article 100204"},"PeriodicalIF":3.2000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667295224000072/pdfft?md5=11d4ed6df16203f7528f36440b10fd65&pid=1-s2.0-S2667295224000072-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High-Confidence Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667295224000072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

With the prevalence of various sensors and smart devices in people’s daily lives, numerous types of information are being sensed. While using such information provides critical and convenient services, we are gradually exposing every piece of our behavior and activities. Researchers are aware of the privacy risks and have been working on preserving privacy while sensing human activities. This survey reviews existing studies on privacy-preserving human activity sensing. We first introduce the sensors and captured private information related to human activities. We then propose a taxonomy to structure the methods for preserving private information from two aspects: individual and collaborative activity sensing. For each of the two aspects, the methods are classified into three levels: signal, algorithm, and system. Finally, we discuss the open challenges and provide future directions.

保护隐私的人类活动传感:调查
随着各种传感器和智能设备在人们日常生活中的普及,无数类型的信息被感知。在利用这些信息提供关键和便捷服务的同时,我们的行为和活动也逐渐暴露无遗。研究人员意识到了隐私风险,并一直致力于在感知人类活动的同时保护隐私。本调查回顾了有关保护隐私的人类活动传感的现有研究。我们首先介绍与人类活动相关的传感器和捕获的隐私信息。然后,我们提出了一个分类法,从个体活动传感和协作活动传感两个方面来构建保护隐私信息的方法。针对这两个方面,我们将方法分为三个层次:信号、算法和系统。最后,我们讨论了面临的挑战,并提出了未来的发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信