{"title":"Facial Recognition Attendance Monitoring System using Deep Learning Techniques","authors":"M. A. Thalor, Omkar S. Gaikwad","doi":"10.59890/ijist.v1i6.685","DOIUrl":null,"url":null,"abstract":"The Facial Recognition Attendance Monitoring System employing Deep Learning Techniques represents a cutting-edge application of artificial intelligence in educational and corporate environments. The implementation of a Facial Recognition System can aid in identifying or verifying a person's identity from a digital image. Accurate attendance records are vital to classroom evaluation. However, manual attendance tracking can result in errors, missed students, or duplicate entries. The adoption of the Face Recognition-based attendance system could help eliminate these shortcomings. This innovative approach involves utilizing a camera to capture input images, detecting faces using algorithms such as Haarcascade, Eigen values, support vector machines, or the Fisher face algorithm, verifying the faces against a database of student profiles, and marking attendance in an Excel sheet. The use of OpenCV, an open-source computer vision library, ensures the efficient functioning of the system.","PeriodicalId":503863,"journal":{"name":"International Journal of Integrated Science and Technology","volume":"8 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Integrated Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59890/ijist.v1i6.685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The Facial Recognition Attendance Monitoring System employing Deep Learning Techniques represents a cutting-edge application of artificial intelligence in educational and corporate environments. The implementation of a Facial Recognition System can aid in identifying or verifying a person's identity from a digital image. Accurate attendance records are vital to classroom evaluation. However, manual attendance tracking can result in errors, missed students, or duplicate entries. The adoption of the Face Recognition-based attendance system could help eliminate these shortcomings. This innovative approach involves utilizing a camera to capture input images, detecting faces using algorithms such as Haarcascade, Eigen values, support vector machines, or the Fisher face algorithm, verifying the faces against a database of student profiles, and marking attendance in an Excel sheet. The use of OpenCV, an open-source computer vision library, ensures the efficient functioning of the system.