MsDC-DEQ-Net: Deep Equilibrium Model (DEQ) with Multiscale Dilated Convolution for Image Compressive Sensing (CS)

IF 1.1 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Youhao Yu, Richard M. Dansereau
{"title":"MsDC-DEQ-Net: Deep Equilibrium Model (DEQ) with Multiscale Dilated Convolution for Image Compressive Sensing (CS)","authors":"Youhao Yu,&nbsp;Richard M. Dansereau","doi":"10.1049/2024/6666549","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Compressive sensing (CS) is a technique that enables the recovery of sparse signals using fewer measurements than traditional sampling methods. To address the computational challenges of CS reconstruction, our objective is to develop an interpretable and concise neural network model for reconstructing natural images using CS. We achieve this by mapping one step of the iterative shrinkage thresholding algorithm (ISTA) to a deep network block, representing one iteration of ISTA. To enhance learning ability and incorporate structural diversity, we integrate aggregated residual transformations (ResNeXt) and squeeze-and-excitation mechanisms into the ISTA block. This block serves as a deep equilibrium layer connected to a semi-tensor product network for convenient sampling and providing an initial reconstruction. The resulting model, called MsDC-DEQ-Net, exhibits competitive performance compared to state-of-the-art network-based methods. It significantly reduces storage requirements compared to deep unrolling methods, using only one iteration block instead of multiple iterations. Unlike deep unrolling models, MsDC-DEQ-Net can be iteratively used, gradually improving reconstruction accuracy while considering computation tradeoffs. Additionally, the model benefits from multiscale dilated convolutions, further enhancing performance.</p>\n </div>","PeriodicalId":56301,"journal":{"name":"IET Signal Processing","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/6666549","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/2024/6666549","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Compressive sensing (CS) is a technique that enables the recovery of sparse signals using fewer measurements than traditional sampling methods. To address the computational challenges of CS reconstruction, our objective is to develop an interpretable and concise neural network model for reconstructing natural images using CS. We achieve this by mapping one step of the iterative shrinkage thresholding algorithm (ISTA) to a deep network block, representing one iteration of ISTA. To enhance learning ability and incorporate structural diversity, we integrate aggregated residual transformations (ResNeXt) and squeeze-and-excitation mechanisms into the ISTA block. This block serves as a deep equilibrium layer connected to a semi-tensor product network for convenient sampling and providing an initial reconstruction. The resulting model, called MsDC-DEQ-Net, exhibits competitive performance compared to state-of-the-art network-based methods. It significantly reduces storage requirements compared to deep unrolling methods, using only one iteration block instead of multiple iterations. Unlike deep unrolling models, MsDC-DEQ-Net can be iteratively used, gradually improving reconstruction accuracy while considering computation tradeoffs. Additionally, the model benefits from multiscale dilated convolutions, further enhancing performance.

Abstract Image

MsDC-DEQ-Net:用于图像压缩传感(CS)的多尺度稀释卷积深度平衡模型(DEQ)
压缩传感(CS)是一种能利用比传统采样方法更少的测量值恢复稀疏信号的技术。为了应对 CS 重建的计算挑战,我们的目标是开发一种可解释的简洁神经网络模型,用于使用 CS 重建自然图像。为此,我们将迭代收缩阈值算法(ISTA)的一个步骤映射到代表 ISTA 一次迭代的深度网络块。为了增强学习能力并纳入结构多样性,我们将聚合残差变换(ResNeXt)和挤压-激发机制整合到 ISTA 块中。该区块作为深度平衡层,与半张量乘积网络相连,方便采样并提供初始重建。由此产生的模型被称为 MsDC-DEQ-Net,与最先进的基于网络的方法相比,其性能极具竞争力。与深度解卷方法相比,它只使用一个迭代块而不是多个迭代块,从而大大降低了存储需求。与深度解卷模型不同,MsDC-DEQ-Net 可以迭代使用,在考虑计算折衷的同时逐步提高重建精度。此外,该模型还受益于多尺度扩张卷积,进一步提高了性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Signal Processing
IET Signal Processing 工程技术-工程:电子与电气
CiteScore
3.80
自引率
5.90%
发文量
83
审稿时长
9.5 months
期刊介绍: IET Signal Processing publishes research on a diverse range of signal processing and machine learning topics, covering a variety of applications, disciplines, modalities, and techniques in detection, estimation, inference, and classification problems. The research published includes advances in algorithm design for the analysis of single and high-multi-dimensional data, sparsity, linear and non-linear systems, recursive and non-recursive digital filters and multi-rate filter banks, as well a range of topics that span from sensor array processing, deep convolutional neural network based approaches to the application of chaos theory, and far more. Topics covered by scope include, but are not limited to: advances in single and multi-dimensional filter design and implementation linear and nonlinear, fixed and adaptive digital filters and multirate filter banks statistical signal processing techniques and analysis classical, parametric and higher order spectral analysis signal transformation and compression techniques, including time-frequency analysis system modelling and adaptive identification techniques machine learning based approaches to signal processing Bayesian methods for signal processing, including Monte-Carlo Markov-chain and particle filtering techniques theory and application of blind and semi-blind signal separation techniques signal processing techniques for analysis, enhancement, coding, synthesis and recognition of speech signals direction-finding and beamforming techniques for audio and electromagnetic signals analysis techniques for biomedical signals baseband signal processing techniques for transmission and reception of communication signals signal processing techniques for data hiding and audio watermarking sparse signal processing and compressive sensing Special Issue Call for Papers: Intelligent Deep Fuzzy Model for Signal Processing - https://digital-library.theiet.org/files/IET_SPR_CFP_IDFMSP.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信