On the Orbital Regular Graph of Finite Solvable Groups

Q4 Mathematics
Karnika Sharma, Vijay Kumar Bhat, P. Singh
{"title":"On the Orbital Regular Graph of Finite Solvable Groups","authors":"Karnika Sharma, Vijay Kumar Bhat, P. Singh","doi":"10.61091/um118-02","DOIUrl":null,"url":null,"abstract":"Let G be a finite solvable group and Δ be the subset of Υ×Υ, where Υ is the set of all pairs of size two commuting elements in G. If G operates on a transitive G – space by the action (υ1,υ2)g=(υg1,υg2); υ1,υ2∈Υ and g∈G, then orbits of G are called orbitals. The subset Δo={(υ,υ);υ∈Υ,(υ,υ)∈Υ×Υ} represents G′s diagonal orbital.The orbital regular graph is a graph on which G acts regularly on the vertices and the edge set. In this paper, we obtain the orbital regular graphs for some finite solvable groups using a regular action. Furthermore, the number of edges for each of a group’s orbitals is obtained.","PeriodicalId":49389,"journal":{"name":"Utilitas Mathematica","volume":"211 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Utilitas Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.61091/um118-02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Let G be a finite solvable group and Δ be the subset of Υ×Υ, where Υ is the set of all pairs of size two commuting elements in G. If G operates on a transitive G – space by the action (υ1,υ2)g=(υg1,υg2); υ1,υ2∈Υ and g∈G, then orbits of G are called orbitals. The subset Δo={(υ,υ);υ∈Υ,(υ,υ)∈Υ×Υ} represents G′s diagonal orbital.The orbital regular graph is a graph on which G acts regularly on the vertices and the edge set. In this paper, we obtain the orbital regular graphs for some finite solvable groups using a regular action. Furthermore, the number of edges for each of a group’s orbitals is obtained.
论有限可解群的轨道正则图
如果 G 通过作用 (υ1,υ2)g=(υg1,υg2); υ1,υ2∈Υ 和 g∈G 作用于传递 G - 空间,那么 G 的轨道称为轨道。子集 Δo={(υ,υ);υ∈Υ,(υ,υ)∈Υ×Υ} 表示 G′的对角轨道。轨道正则图是 G 规则地作用于顶点和边集的图。本文利用正则作用得到了一些有限可解群的轨道正则图。此外,我们还得到了每个群轨道的边数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Utilitas Mathematica
Utilitas Mathematica 数学-统计学与概率论
CiteScore
0.50
自引率
0.00%
发文量
0
审稿时长
6 months
期刊介绍: Utilitas Mathematica publishes papers in all areas of statistical designs and combinatorial mathematics, including graph theory, design theory, extremal combinatorics, enumeration, algebraic combinatorics, combinatorial optimization, Ramsey theory, automorphism groups, coding theory, finite geometries, chemical graph theory, etc., as well as the closely related area of number-theoretic polynomials for enumeration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信