{"title":"Numerical simulation of integrating an air conditioner with an evaporative air cooler","authors":"Haider Mumtaz, Salman Hammdi","doi":"10.37868/hsd.v6i1.346","DOIUrl":null,"url":null,"abstract":"During the summer, air conditioning is increasingly used in commercial and residential structures to provide thermal comfort. The elevated condenser pressure caused by high ambient temperatures has led to a significant increase in electricity consumption in dry, hot climates. Therefore, this article presents the results of a numerical simulation investigation into the feasibility of enhancing the performance of a conventional air conditioning unit by applying a direct evaporative cooling system. The objective is to increase the cooling capacity while decreasing power consumption. The program used a small window-type air conditioner configured to simulate various weather conditions. The numerical findings indicate that incorporating evaporative cooling aids improved the system's ability to overcome numerous obstacles, resulting in a 10–20% increase in refrigeration capacity. Additionally, power consumption was reduced by approximately 3%, and the discharge temperature fell by 6–10°C. The predicted mean vote standard (PMV) for thermal conditions for human occupants yielded favorable outcomes (normal-type). Despite the challenging climate conditions prevailing during the five sweltering summer months, water production demonstrated good results, particularly in September.","PeriodicalId":505792,"journal":{"name":"Heritage and Sustainable Development","volume":" 47","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heritage and Sustainable Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37868/hsd.v6i1.346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
During the summer, air conditioning is increasingly used in commercial and residential structures to provide thermal comfort. The elevated condenser pressure caused by high ambient temperatures has led to a significant increase in electricity consumption in dry, hot climates. Therefore, this article presents the results of a numerical simulation investigation into the feasibility of enhancing the performance of a conventional air conditioning unit by applying a direct evaporative cooling system. The objective is to increase the cooling capacity while decreasing power consumption. The program used a small window-type air conditioner configured to simulate various weather conditions. The numerical findings indicate that incorporating evaporative cooling aids improved the system's ability to overcome numerous obstacles, resulting in a 10–20% increase in refrigeration capacity. Additionally, power consumption was reduced by approximately 3%, and the discharge temperature fell by 6–10°C. The predicted mean vote standard (PMV) for thermal conditions for human occupants yielded favorable outcomes (normal-type). Despite the challenging climate conditions prevailing during the five sweltering summer months, water production demonstrated good results, particularly in September.