Guoliang Bian, Meng Yiqun, Gu Yi, Chuang Liu, Hu Bo, Guiping Zhou, Huanhuan Luo, Yuanzhu Zhao, Yiming Chang, Zhonghui Wang
{"title":"Competitive Pricing Strategy of Wind-Solar-Fire Coupling System in Monthly Concentrated Market Considering the Uncertainty of Renewable Energy","authors":"Guoliang Bian, Meng Yiqun, Gu Yi, Chuang Liu, Hu Bo, Guiping Zhou, Huanhuan Luo, Yuanzhu Zhao, Yiming Chang, Zhonghui Wang","doi":"10.13052/spee1048-5236.4322","DOIUrl":null,"url":null,"abstract":"Monthly centralized bidding is a key link in the transition from annual bilateral trading to spot trading, the research object of this paper is the multi-type power system (coupling system) which is integrated and coupled by thermal power and renewable energy under the same grid point, from the market point of view, this paper discusses its competitive strategy and revenue in the monthly centralized bidding market. First, an outer-level market clearing model that adapts to the participation of the coupling system is constructed to maximize the clearing in terms of social welfare. Secondly, considering the forecast error of scenery, the optimization model of the inner coupling system is established to analyze the cost of the coupling system, and the increment of the coupling system is evaluated quantitatively. Finally, a two-layer optimization model for coupling system to participate in the monthly centralized bidding market is formed, and then the optimal operation strategy of coupling system is studied. The simulation verification of the calculation example shows that participating in the monthly centralized bidding transaction in the mode of the coupling system will increase the income of each of the scenery and fire, the proposed coupling system model promotes changes in the energy structure of the power market, driven by improving the overall economic benefits, ensuring the economic benefits of traditional units and expanding the scope of the renewable energy market, so as to provide electricity to renewable energy and thermal power to improve auxiliary services. The development of the situation provides new ideas for the large-scale grid-connected consumption of new energy.","PeriodicalId":35712,"journal":{"name":"Strategic Planning for Energy and the Environment","volume":" 28","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strategic Planning for Energy and the Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/spee1048-5236.4322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
Monthly centralized bidding is a key link in the transition from annual bilateral trading to spot trading, the research object of this paper is the multi-type power system (coupling system) which is integrated and coupled by thermal power and renewable energy under the same grid point, from the market point of view, this paper discusses its competitive strategy and revenue in the monthly centralized bidding market. First, an outer-level market clearing model that adapts to the participation of the coupling system is constructed to maximize the clearing in terms of social welfare. Secondly, considering the forecast error of scenery, the optimization model of the inner coupling system is established to analyze the cost of the coupling system, and the increment of the coupling system is evaluated quantitatively. Finally, a two-layer optimization model for coupling system to participate in the monthly centralized bidding market is formed, and then the optimal operation strategy of coupling system is studied. The simulation verification of the calculation example shows that participating in the monthly centralized bidding transaction in the mode of the coupling system will increase the income of each of the scenery and fire, the proposed coupling system model promotes changes in the energy structure of the power market, driven by improving the overall economic benefits, ensuring the economic benefits of traditional units and expanding the scope of the renewable energy market, so as to provide electricity to renewable energy and thermal power to improve auxiliary services. The development of the situation provides new ideas for the large-scale grid-connected consumption of new energy.