Evaluating the impact of climate change on irrigation canal performance

IF 1.6 4区 农林科学 Q2 AGRONOMY
Hamideh Mohebbi, Hesam Ghodousi, Kazem Shahverdi
{"title":"Evaluating the impact of climate change on irrigation canal performance","authors":"Hamideh Mohebbi,&nbsp;Hesam Ghodousi,&nbsp;Kazem Shahverdi","doi":"10.1002/ird.2915","DOIUrl":null,"url":null,"abstract":"<p>Irrigation canals are the main systems that convey water from sources to demand nodes. Their performance is affected by climate change. In this research, the effect of climate change on temperature and precipitation was investigated in the Aghili irrigation network over the base period 1994–2017, and the Aghili east canal performance was consequently assessed. To this end, the climate data were first assessed by the Mann–Kendall test to determine trends. Then, changes in temperature and precipitation were simulated using HadGEM2-ES in the Long Ashton Research Station Weather Generator (LARS-WG) under two representative concentration pathways (RCPs) of 2.6 and 8.5 over the periods 2021–2040 and 2041–2060. CROPWAT8 was used to calculate the crop water requirement and irrigation hydromodule, and the turnout flow in the considered canal was calculated next. Finally, the canal was simulated and assessed. The results showed that the maximum temperature, evapotranspiration and turnout flow increases are 3.7°C, 1.45 mm/day and 39 L/s, respectively, related to the base timescale. Additionally, the adequacy performance decreased to 0.768 from 0.986, leading to a maximum extra water requirement of 15.1 million m<sup>3</sup>/year in the Aghili east canal under a pessimistic scenario.</p>","PeriodicalId":14848,"journal":{"name":"Irrigation and Drainage","volume":"73 3","pages":"961-973"},"PeriodicalIF":1.6000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Irrigation and Drainage","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ird.2915","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Irrigation canals are the main systems that convey water from sources to demand nodes. Their performance is affected by climate change. In this research, the effect of climate change on temperature and precipitation was investigated in the Aghili irrigation network over the base period 1994–2017, and the Aghili east canal performance was consequently assessed. To this end, the climate data were first assessed by the Mann–Kendall test to determine trends. Then, changes in temperature and precipitation were simulated using HadGEM2-ES in the Long Ashton Research Station Weather Generator (LARS-WG) under two representative concentration pathways (RCPs) of 2.6 and 8.5 over the periods 2021–2040 and 2041–2060. CROPWAT8 was used to calculate the crop water requirement and irrigation hydromodule, and the turnout flow in the considered canal was calculated next. Finally, the canal was simulated and assessed. The results showed that the maximum temperature, evapotranspiration and turnout flow increases are 3.7°C, 1.45 mm/day and 39 L/s, respectively, related to the base timescale. Additionally, the adequacy performance decreased to 0.768 from 0.986, leading to a maximum extra water requirement of 15.1 million m3/year in the Aghili east canal under a pessimistic scenario.

评估气候变化对灌溉渠性能的影响
灌溉渠是将水从水源输送到需求节点的主要系统。它们的性能受到气候变化的影响。本研究调查了 1994-2017 年基期内气候变化对阿吉利灌溉网温度和降水量的影响,并对阿吉利东渠的性能进行了评估。为此,首先通过 Mann-Kendall 检验对气候数据进行评估,以确定趋势。然后,在 2021-2040 年和 2041-2060 年期间,在 2.6 和 8.5 两种代表性浓度路径(RCPs)下,使用 HadGEM2-ES 在长阿什顿研究站天气生成器(LARS-WG)中模拟温度和降水的变化。使用 CROPWAT8 计算作物需水量和灌溉水量,然后计算考虑水渠的岔流。最后,对渠道进行了模拟和评估。结果表明,与基准时间尺度相比,最高温度、蒸散量和岔道流量分别增加了 3.7°C、1.45 毫米/天和 39 升/秒。此外,充足性从 0.986 降至 0.768,在悲观情况下,阿吉利东运河的最大额外需水量为 1510 万立方米/年。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Irrigation and Drainage
Irrigation and Drainage 农林科学-农艺学
CiteScore
3.40
自引率
10.50%
发文量
107
审稿时长
3 months
期刊介绍: Human intervention in the control of water for sustainable agricultural development involves the application of technology and management approaches to: (i) provide the appropriate quantities of water when it is needed by the crops, (ii) prevent salinisation and water-logging of the root zone, (iii) protect land from flooding, and (iv) maximise the beneficial use of water by appropriate allocation, conservation and reuse. All this has to be achieved within a framework of economic, social and environmental constraints. The Journal, therefore, covers a wide range of subjects, advancement in which, through high quality papers in the Journal, will make a significant contribution to the enormous task of satisfying the needs of the world’s ever-increasing population. The Journal also publishes book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信