Chojaa Hamid, Derouich Aziz, O. Zamzoum, Abderrahman El Idrissi
{"title":"Robust Control System for DFIG-Based WECS and Energy Storage in reel Wind Conditions","authors":"Chojaa Hamid, Derouich Aziz, O. Zamzoum, Abderrahman El Idrissi","doi":"10.4108/ew.4856","DOIUrl":null,"url":null,"abstract":"This research work focuses on addressing the challenges of controlling a wind energy conversion system (WECS) connected to the grid, particularly when faced with variable wind speed profiles. The system consists of a Doubly-Fed Induction Generator (DFIG) connected to the grid through an AC/DC/AC converter, along with a Li-ion battery storage system connected to the Back-to-Back converter DC link via a DC/DC converter. The non-linearity and internal parametric variation of the wind turbine can negatively impact energy production, battery charging performance, and battery lifespan. To overcome these issues, the study proposes a robust control approach called Integral action Sliding Mode Control (ISMC) to enhance the dynamic performance of the WECS based on DFIG. Additionally, the battery charging and discharging controllers play a crucial role in efficiently distributing power to the grid and storage unit based on the battery's state of charge, extracted energy, and power injected into the grid. Two current regulation modes, buck charging and boost discharging, are employed to ensure proper energy distribution. Furthermore, a storage system energy management algorithm is implemented to ensure battery safety during one of the charging modes. The effectiveness and robustness of the proposed control method were validated through simulations of a 1.5 MW wind power conversion system using Matlab/Simulink. The results confirmed the method's efficiency and efficacy.","PeriodicalId":502230,"journal":{"name":"EAI Endorsed Transactions on Energy Web","volume":" 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Transactions on Energy Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/ew.4856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This research work focuses on addressing the challenges of controlling a wind energy conversion system (WECS) connected to the grid, particularly when faced with variable wind speed profiles. The system consists of a Doubly-Fed Induction Generator (DFIG) connected to the grid through an AC/DC/AC converter, along with a Li-ion battery storage system connected to the Back-to-Back converter DC link via a DC/DC converter. The non-linearity and internal parametric variation of the wind turbine can negatively impact energy production, battery charging performance, and battery lifespan. To overcome these issues, the study proposes a robust control approach called Integral action Sliding Mode Control (ISMC) to enhance the dynamic performance of the WECS based on DFIG. Additionally, the battery charging and discharging controllers play a crucial role in efficiently distributing power to the grid and storage unit based on the battery's state of charge, extracted energy, and power injected into the grid. Two current regulation modes, buck charging and boost discharging, are employed to ensure proper energy distribution. Furthermore, a storage system energy management algorithm is implemented to ensure battery safety during one of the charging modes. The effectiveness and robustness of the proposed control method were validated through simulations of a 1.5 MW wind power conversion system using Matlab/Simulink. The results confirmed the method's efficiency and efficacy.