Convolutional Arabic handwriting recognition system based BLSTM-CTC using WBS decoder

M. Rabi
{"title":"Convolutional Arabic handwriting recognition system based BLSTM-CTC using WBS decoder","authors":"M. Rabi","doi":"10.47679/ijasca.v3i2.52","DOIUrl":null,"url":null,"abstract":"Arabic handwriting recognition (AHR) poses major challenges for pattern recognition due to the cursive script and visual similarity of Arabic characters. While deep learning demonstrates promise, architectural enhancements may further improve performance. This study presents an offline AHR approach using a convolutional neural network (CNN) with bidirectional long short-term memory (BLSTM) and connectionist temporal classification (CTC). By enhancing temporal modeling and context representations without segmentation requirements, this BLSTM-CTC-CNN framework with an integrated Word Beam Search (WBS) decoder achieved 94.58% accuracy on the IFN/ENIT database. Results highlight improved efficiency over prior works. This demonstrates continued advancement in sophisticated deep learning techniques for accurate AHR through specialized modeling of Arabic script cursive properties and decoding constraints. This research represents an advancement in the continuous development of progressively intricate and precise systems for handwriting recognition.","PeriodicalId":507177,"journal":{"name":"International Journal of Advanced Science and Computer Applications","volume":" 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Science and Computer Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47679/ijasca.v3i2.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Arabic handwriting recognition (AHR) poses major challenges for pattern recognition due to the cursive script and visual similarity of Arabic characters. While deep learning demonstrates promise, architectural enhancements may further improve performance. This study presents an offline AHR approach using a convolutional neural network (CNN) with bidirectional long short-term memory (BLSTM) and connectionist temporal classification (CTC). By enhancing temporal modeling and context representations without segmentation requirements, this BLSTM-CTC-CNN framework with an integrated Word Beam Search (WBS) decoder achieved 94.58% accuracy on the IFN/ENIT database. Results highlight improved efficiency over prior works. This demonstrates continued advancement in sophisticated deep learning techniques for accurate AHR through specialized modeling of Arabic script cursive properties and decoding constraints. This research represents an advancement in the continuous development of progressively intricate and precise systems for handwriting recognition.
使用 WBS 解码器的基于 BLSTM-CTC 的卷积阿拉伯语手写识别系统
阿拉伯语手写识别(AHR)因其草书字体和阿拉伯字符的视觉相似性,给模式识别带来了重大挑战。虽然深度学习前景广阔,但架构上的改进可能会进一步提高性能。本研究提出了一种离线 AHR 方法,该方法使用了具有双向长短期记忆(BLSTM)和联结时态分类(CTC)的卷积神经网络(CNN)。通过增强时间建模和上下文表示而无需分段要求,这种带有集成词束搜索(WBS)解码器的 BLSTM-CTC-CNN 框架在 IFN/ENIT 数据库上实现了 94.58% 的准确率。与之前的研究相比,结果凸显了效率的提高。这表明,通过对阿拉伯文草书特性和解码约束进行专门建模,在实现精确 AHR 的复杂深度学习技术方面取得了持续进步。这项研究标志着手写识别系统在逐步复杂化和精确化方面的不断发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信