A nonlinear model predictive control for air suspension in hub motor electric vehicle

Yi Yu, Zhongxing Li, Yin Zhou, Xue Wang
{"title":"A nonlinear model predictive control for air suspension in hub motor electric vehicle","authors":"Yi Yu, Zhongxing Li, Yin Zhou, Xue Wang","doi":"10.1177/09544070231213687","DOIUrl":null,"url":null,"abstract":"The hub-motor electric vehicle (HM-EV) is considered as an ideal configuration for electric vehicles (EVs). However, the electromechanical coupling effect deteriorates HM-EV ride comfort, which limits its widespread application in EVs. In this study, the HM-EV dynamic system with air springs is proposed to intervene in vehicle attitude and ride comfort. The HM-EV dynamic model with air spring, considering the electromechanical coupling effect, is established and the test validation is investigated. Then quasi-infinite horizon nonlinear model predictive control (QIH NMPC) is designed to improve the longitudinal and vertical dynamic performance. The dynamic performance of passive suspension, air suspension based on QIH NMPC, air suspension based on MPC, and PID control receptively, are compared under several random road scenarios. Finally, the results indicated that the proposed control algorithm can improve ride comfort, reduce motor vibration, and improve longitudinal and vertical dynamic performance.","PeriodicalId":509770,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09544070231213687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The hub-motor electric vehicle (HM-EV) is considered as an ideal configuration for electric vehicles (EVs). However, the electromechanical coupling effect deteriorates HM-EV ride comfort, which limits its widespread application in EVs. In this study, the HM-EV dynamic system with air springs is proposed to intervene in vehicle attitude and ride comfort. The HM-EV dynamic model with air spring, considering the electromechanical coupling effect, is established and the test validation is investigated. Then quasi-infinite horizon nonlinear model predictive control (QIH NMPC) is designed to improve the longitudinal and vertical dynamic performance. The dynamic performance of passive suspension, air suspension based on QIH NMPC, air suspension based on MPC, and PID control receptively, are compared under several random road scenarios. Finally, the results indicated that the proposed control algorithm can improve ride comfort, reduce motor vibration, and improve longitudinal and vertical dynamic performance.
轮毂电机电动汽车空气悬架的非线性模型预测控制
轮毂电机电动汽车(HM-EV)被认为是电动汽车(EV)的理想配置。然而,机电耦合效应会降低 HM-EV 的乘坐舒适性,从而限制了其在电动汽车中的广泛应用。本研究提出了带空气弹簧的 HM-EV 动态系统,以干预车辆姿态和乘坐舒适性。考虑到机电耦合效应,建立了带空气弹簧的 HM-EV 动态模型,并进行了试验验证。然后设计了准无限视界非线性模型预测控制(QIH NMPC)来改善纵向和垂直动态性能。在几种随机路况下,比较了被动悬架、基于 QIH NMPC 的空气悬架、基于 MPC 的空气悬架和接受式 PID 控制的动态性能。最后,研究结果表明,所提出的控制算法可以提高乘坐舒适性,减少电机振动,改善纵向和垂直动态性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信