A two-parameter estimator for correlated regressors in gamma regression model

Janet Iyabo Idowu, Akin Soga Fasoranbaku, K. Ayinde
{"title":"A two-parameter estimator for correlated regressors in gamma regression model","authors":"Janet Iyabo Idowu, Akin Soga Fasoranbaku, K. Ayinde","doi":"10.4314/swj.v18i4.8","DOIUrl":null,"url":null,"abstract":"Gamma Modified Two Parameter (GMTP) is a novel biased two-parameter estimator proposed to address the effects of multicollinearity in Generalized Linear Models (GLMs). An expansion of the linear regression model's Modified Two Parameters (MTP) is the newly suggested estimator. The performance of the GMTP estimator over the maximum likelihood estimator (MLE), gamma ridge estimator (GRE), gamma Liu estimator (GLE), and gamma Liu-type estimator (GLTE) reviewed in this article are theoretically compared, and the estimator's properties is discussed. A simulation study that examine the effects of the dispersion parameter, sample size, explanatory variables, and degree of correlation are used to examine the superiority of the GMTP with four different biasing parameters over the MLE, GRE, GLE, and GLTE with regard to the estimated MSE criterion. The GMTP estimator with biasing parameters and outperforms the MLE, GRE, GLE, and GLTE, according to simulation research. More research can be done to see how well the GMTP estimator performs in comparison to other estimators that were not examined in this study. 2 k 4 k","PeriodicalId":21583,"journal":{"name":"Science World Journal","volume":" 40","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science World Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4314/swj.v18i4.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Gamma Modified Two Parameter (GMTP) is a novel biased two-parameter estimator proposed to address the effects of multicollinearity in Generalized Linear Models (GLMs). An expansion of the linear regression model's Modified Two Parameters (MTP) is the newly suggested estimator. The performance of the GMTP estimator over the maximum likelihood estimator (MLE), gamma ridge estimator (GRE), gamma Liu estimator (GLE), and gamma Liu-type estimator (GLTE) reviewed in this article are theoretically compared, and the estimator's properties is discussed. A simulation study that examine the effects of the dispersion parameter, sample size, explanatory variables, and degree of correlation are used to examine the superiority of the GMTP with four different biasing parameters over the MLE, GRE, GLE, and GLTE with regard to the estimated MSE criterion. The GMTP estimator with biasing parameters and outperforms the MLE, GRE, GLE, and GLTE, according to simulation research. More research can be done to see how well the GMTP estimator performs in comparison to other estimators that were not examined in this study. 2 k 4 k
伽马回归模型中相关回归因子的双参数估计器
伽马修正两参数(Gamma Modified Two Parameter,GMTP)是一种新颖的有偏差的两参数估计器,用于解决广义线性模型(GLM)中多重共线性的影响。新提出的估计器是对线性回归模型修正两参数(MTP)的扩展。本文从理论上比较了 GMTP 估计器相对于最大似然估计器(MLE)、伽玛脊估计器(GRE)、伽玛刘估计器(GLE)和伽玛刘型估计器(GLTE)的性能,并讨论了估计器的特性。通过对离散参数、样本大小、解释变量和相关程度的影响进行模拟研究,考察了具有四个不同偏置参数的 GMTP 在估计 MSE 标准方面优于 MLE、GRE、GLE 和 GLTE 的情况。根据模拟研究,带有偏置参数的 GMTP 估计器优于 MLE、GRE、GLE 和 GLTE。还可以进行更多的研究,以了解 GMTP 估计器与本研究未考察的其他估计器相比的性能如何。2 k 4 k
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信