On the Use of Quality Diversity Algorithms for the Travelling Thief Problem

Adel Nikfarjam, Aneta Neumann, Frank Neumann
{"title":"On the Use of Quality Diversity Algorithms for the Travelling Thief Problem","authors":"Adel Nikfarjam, Aneta Neumann, Frank Neumann","doi":"10.1145/3641109","DOIUrl":null,"url":null,"abstract":"In real-world optimisation, it is common to face several sub-problems interacting and forming the main problem. There is an inter-dependency between the sub-problems, making it impossible to solve such a problem by focusing on only one component. The travelling thief problem (TTP) belongs to this category and is formed by the integration of the travelling salesperson problem (TSP) and the knapsack problem (KP). In this paper, we investigate the inter-dependency of the TSP and the KP by means of quality diversity (QD) approaches. QD algorithms provide a powerful tool not only to obtain high-quality solutions but also to illustrate the distribution of high-performing solutions in the behavioural space. We introduce a multi-dimensional archive of phenotypic elites (MAP-Elites) based evolutionary algorithm using well-known TSP and KP search operators, taking the TSP and KP score as the behavioural descriptor. MAP-Elites algorithms are QD-based techniques to explore high-performing solutions in a behavioural space. Afterwards, we conduct comprehensive experimental studies that show the usefulness of using the QD approach applied to the TTP. First, we provide insights regarding high-quality TTP solutions in the TSP/KP behavioural space. Afterwards, we show that better solutions for the TTP can be obtained by using our QD approach, and it can improve the best-known solution for a number of TTP instances used for benchmarking in the literature.","PeriodicalId":220659,"journal":{"name":"ACM Transactions on Evolutionary Learning","volume":" July","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Evolutionary Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3641109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In real-world optimisation, it is common to face several sub-problems interacting and forming the main problem. There is an inter-dependency between the sub-problems, making it impossible to solve such a problem by focusing on only one component. The travelling thief problem (TTP) belongs to this category and is formed by the integration of the travelling salesperson problem (TSP) and the knapsack problem (KP). In this paper, we investigate the inter-dependency of the TSP and the KP by means of quality diversity (QD) approaches. QD algorithms provide a powerful tool not only to obtain high-quality solutions but also to illustrate the distribution of high-performing solutions in the behavioural space. We introduce a multi-dimensional archive of phenotypic elites (MAP-Elites) based evolutionary algorithm using well-known TSP and KP search operators, taking the TSP and KP score as the behavioural descriptor. MAP-Elites algorithms are QD-based techniques to explore high-performing solutions in a behavioural space. Afterwards, we conduct comprehensive experimental studies that show the usefulness of using the QD approach applied to the TTP. First, we provide insights regarding high-quality TTP solutions in the TSP/KP behavioural space. Afterwards, we show that better solutions for the TTP can be obtained by using our QD approach, and it can improve the best-known solution for a number of TTP instances used for benchmarking in the literature.
论旅行大盗问题中质量分集算法的使用
在现实世界的优化过程中,经常会遇到几个子问题相互作用而形成主问题的情况。子问题之间存在相互依赖关系,因此不可能只关注一个部分来解决这样的问题。旅行小偷问题(TTP)就属于这类问题,它是由旅行推销员问题(TSP)和背包问题(KP)整合而成的。在本文中,我们通过质量多样性(QD)方法研究了 TSP 和 KP 的相互依存关系。QD 算法提供了一个强大的工具,不仅能获得高质量的解决方案,还能说明高性能解决方案在行为空间中的分布情况。我们介绍了一种基于多维表型精英档案(MAP-Elites)的进化算法,该算法使用著名的 TSP 和 KP 搜索算子,将 TSP 和 KP 分数作为行为描述符。MAP-Elites 算法是一种基于 QD 的技术,用于探索行为空间中的高效解决方案。随后,我们进行了全面的实验研究,展示了将 QD 方法应用于 TTP 的实用性。首先,我们提供了有关 TSP/KP 行为空间中高质量 TTP 解决方案的见解。之后,我们证明了使用我们的 QD 方法可以获得更好的 TTP 解决方案,并且可以改进文献中用于基准测试的一些 TTP 实例的已知最佳解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信