{"title":"Research on the minimum cutting thickness of variable density micro-texture ball-end milling cutter","authors":"Shucai Yang, Shiwen Xing, Yang Yu, Chunsheng He","doi":"10.1177/09544054231223267","DOIUrl":null,"url":null,"abstract":"The critical cutting thickness determines the minimum cutting amount of the tool for the workpiece material, which indirectly affects the machined surface quality of the workpiece and the manufacturing accuracy of key components. It is of great significance to study the minimum cutting thickness of a ball-end milling cutter based on a variable distribution density micro-texture model. Therefore, in this paper, the ball-end milling cutter is taken as the research object, and the variable distribution density micro-texture model is established. Based on the stick-slip friction theory, a theoretical prediction model is established for the minimum cutting thickness of titanium alloy. This model considers different forms of friction in the tool-chip contact area and takes into account the influence of the cutting-edge radius and the geometric parameters of the micro-texture. Based on the machined surface quality of the workpiece, an experimental method for solving the minimum cutting thickness is proposed for milling titanium alloy with a variable distribution density micro-texture ball-end milling cutter. The theoretical prediction model of minimum cutting thickness is verified by finite element simulation and milling tests. The results show that the minimum cutting thickness increases with an increase in the radius of the cutting edge. The error between the theoretical value and the experimental results is less than 10%, which fully verifies the accuracy of the theoretical model of the minimum cutting thickness of the variable distribution density micro-texture ball-end milling cutter.","PeriodicalId":20663,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544054231223267","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
The critical cutting thickness determines the minimum cutting amount of the tool for the workpiece material, which indirectly affects the machined surface quality of the workpiece and the manufacturing accuracy of key components. It is of great significance to study the minimum cutting thickness of a ball-end milling cutter based on a variable distribution density micro-texture model. Therefore, in this paper, the ball-end milling cutter is taken as the research object, and the variable distribution density micro-texture model is established. Based on the stick-slip friction theory, a theoretical prediction model is established for the minimum cutting thickness of titanium alloy. This model considers different forms of friction in the tool-chip contact area and takes into account the influence of the cutting-edge radius and the geometric parameters of the micro-texture. Based on the machined surface quality of the workpiece, an experimental method for solving the minimum cutting thickness is proposed for milling titanium alloy with a variable distribution density micro-texture ball-end milling cutter. The theoretical prediction model of minimum cutting thickness is verified by finite element simulation and milling tests. The results show that the minimum cutting thickness increases with an increase in the radius of the cutting edge. The error between the theoretical value and the experimental results is less than 10%, which fully verifies the accuracy of the theoretical model of the minimum cutting thickness of the variable distribution density micro-texture ball-end milling cutter.
期刊介绍:
Manufacturing industries throughout the world are changing very rapidly. New concepts and methods are being developed and exploited to enable efficient and effective manufacturing. Existing manufacturing processes are being improved to meet the requirements of lean and agile manufacturing. The aim of the Journal of Engineering Manufacture is to provide a focus for these developments in engineering manufacture by publishing original papers and review papers covering technological and scientific research, developments and management implementation in manufacturing. This journal is also peer reviewed.
Contributions are welcomed in the broad areas of manufacturing processes, manufacturing technology and factory automation, digital manufacturing, design and manufacturing systems including management relevant to engineering manufacture. Of particular interest at the present time would be papers concerned with digital manufacturing, metrology enabled manufacturing, smart factory, additive manufacturing and composites as well as specialist manufacturing fields like nanotechnology, sustainable & clean manufacturing and bio-manufacturing.
Articles may be Research Papers, Reviews, Technical Notes, or Short Communications.