Jordan ideals and \((\alpha , \beta )\)-derivations on 3-prime near-rings and rings

Q2 Mathematics
Abdelkarim Boua, Gurninder S. Sandhu, Ahmed Y. Abdelwanis
{"title":"Jordan ideals and \\((\\alpha , \\beta )\\)-derivations on 3-prime near-rings and rings","authors":"Abdelkarim Boua,&nbsp;Gurninder S. Sandhu,&nbsp;Ahmed Y. Abdelwanis","doi":"10.1007/s11565-023-00485-2","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\({\\mathcal {N}}\\)</span> be a 3-prime near-ring with center <span>\\(Z({\\mathcal {N}})\\)</span>, <span>\\(\\alpha , \\beta : {\\mathcal {N}}\\rightarrow {\\mathcal {N}}\\)</span> be the maps, and <i>J</i> be a nonzero Jordan ideal of <span>\\({\\mathcal {N}}.\\)</span> In this paper, we first introduce the notion of left <span>\\((\\alpha , \\beta )\\)</span>-derivations and then study their properties. We also characterize the commutativity of 3-prime near rings and obtain some related results. Finally, some examples are provided to illustrate that the hypotheses of our results are not superfluous.\n</p></div>","PeriodicalId":35009,"journal":{"name":"Annali dell''Universita di Ferrara","volume":"70 2","pages":"479 - 491"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11565-023-00485-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali dell''Universita di Ferrara","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s11565-023-00485-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Let \({\mathcal {N}}\) be a 3-prime near-ring with center \(Z({\mathcal {N}})\), \(\alpha , \beta : {\mathcal {N}}\rightarrow {\mathcal {N}}\) be the maps, and J be a nonzero Jordan ideal of \({\mathcal {N}}.\) In this paper, we first introduce the notion of left \((\alpha , \beta )\)-derivations and then study their properties. We also characterize the commutativity of 3-prime near rings and obtain some related results. Finally, some examples are provided to illustrate that the hypotheses of our results are not superfluous.

三原数近环和环上的乔丹理想和$$(α, \beta )$$派生
让 \({\mathcal {N}}\) 是一个以 \(Z({\mathcal {N}})\) 为中心的三元近环, \(\alpha , \beta : {\mathcal {N}}\rightarrow {\mathcal {N}}\) 是映射,并且 J 是 \({\mathcal {N}} 的一个非零约旦理想。\本文首先介绍了左((\alpha , \beta )\)衍生的概念,然后研究了它们的性质。我们还描述了 3-prime 近环的交换性,并得到了一些相关结果。最后,我们提供了一些例子来说明我们结果中的假设并非多余。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annali dell''Universita di Ferrara
Annali dell''Universita di Ferrara Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
71
期刊介绍: Annali dell''Università di Ferrara is a general mathematical journal publishing high quality papers in all aspects of pure and applied mathematics. After a quick preliminary examination, potentially acceptable contributions will be judged by appropriate international referees. Original research papers are preferred, but well-written surveys on important subjects are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信