Bohan Wang, Qian Sui, Fanjie Ji, Chun Guo, Weijia Wang
{"title":"Improved Masking Multiplication with PRGs and Its Application to Arithmetic Addition","authors":"Bohan Wang, Qian Sui, Fanjie Ji, Chun Guo, Weijia Wang","doi":"10.1049/2024/5544999","DOIUrl":null,"url":null,"abstract":"<div>\n <p>At Eurocrypt 2020, Coron et al. proposed a masking technique allowing the use of random numbers from pseudo-random generators (PRGs) to largely reduce the use of expansive true-random generators (TRNGs). For security against <i>d</i> probes, they describe a construction using 2<i>d</i> PRGs, each of which is fed with at most 2<i>d</i> random variables in a finite field, resulting in a randomness requirement of <span></span><math></math>. In this paper, we improve the technique on multiple frontiers. On the theoretical level, we push the limits of the randomness requirement by providing an improved masking multiplication using only <i>d</i> PRGs, each of which is fed with <i>d</i> random variables, saving more than half random bits. On the practical level, considering that the masking of arithmetic addition usually requires more randomness (than multiplication), we apply the technique to the algorithm proposed at FSE 2015 that is a very efficient scheme performing arithmetic addition modulo 2<sup><i>w</i></sup>. It significantly reduces the randomness cost of masked arithmetic addition, and further advocates the advantage of masking with PRGs. Furthermore, we apply our masking scheme to the <span>Speck</span>, <span>XTEA</span>, and <span>Sparkle</span>, and provide the first (to the best of our knowledge) higher order masked implementations for the ciphers using ARX structure.</p>\n </div>","PeriodicalId":50380,"journal":{"name":"IET Information Security","volume":"2024 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/5544999","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Information Security","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/2024/5544999","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
At Eurocrypt 2020, Coron et al. proposed a masking technique allowing the use of random numbers from pseudo-random generators (PRGs) to largely reduce the use of expansive true-random generators (TRNGs). For security against d probes, they describe a construction using 2d PRGs, each of which is fed with at most 2d random variables in a finite field, resulting in a randomness requirement of . In this paper, we improve the technique on multiple frontiers. On the theoretical level, we push the limits of the randomness requirement by providing an improved masking multiplication using only d PRGs, each of which is fed with d random variables, saving more than half random bits. On the practical level, considering that the masking of arithmetic addition usually requires more randomness (than multiplication), we apply the technique to the algorithm proposed at FSE 2015 that is a very efficient scheme performing arithmetic addition modulo 2w. It significantly reduces the randomness cost of masked arithmetic addition, and further advocates the advantage of masking with PRGs. Furthermore, we apply our masking scheme to the Speck, XTEA, and Sparkle, and provide the first (to the best of our knowledge) higher order masked implementations for the ciphers using ARX structure.
期刊介绍:
IET Information Security publishes original research papers in the following areas of information security and cryptography. Submitting authors should specify clearly in their covering statement the area into which their paper falls.
Scope:
Access Control and Database Security
Ad-Hoc Network Aspects
Anonymity and E-Voting
Authentication
Block Ciphers and Hash Functions
Blockchain, Bitcoin (Technical aspects only)
Broadcast Encryption and Traitor Tracing
Combinatorial Aspects
Covert Channels and Information Flow
Critical Infrastructures
Cryptanalysis
Dependability
Digital Rights Management
Digital Signature Schemes
Digital Steganography
Economic Aspects of Information Security
Elliptic Curve Cryptography and Number Theory
Embedded Systems Aspects
Embedded Systems Security and Forensics
Financial Cryptography
Firewall Security
Formal Methods and Security Verification
Human Aspects
Information Warfare and Survivability
Intrusion Detection
Java and XML Security
Key Distribution
Key Management
Malware
Multi-Party Computation and Threshold Cryptography
Peer-to-peer Security
PKIs
Public-Key and Hybrid Encryption
Quantum Cryptography
Risks of using Computers
Robust Networks
Secret Sharing
Secure Electronic Commerce
Software Obfuscation
Stream Ciphers
Trust Models
Watermarking and Fingerprinting
Special Issues. Current Call for Papers:
Security on Mobile and IoT devices - https://digital-library.theiet.org/files/IET_IFS_SMID_CFP.pdf