CONSTRUCTION OF A WEIGHTED FRACTAL INTERPOLATION SURFACE BASED ON MATKOWSKI CONTRACTIONS

Fractals Pub Date : 2024-01-18 DOI:10.1142/s0218348x24500130
QIAN-RUI Zhong, HONG-YONG Wang
{"title":"CONSTRUCTION OF A WEIGHTED FRACTAL INTERPOLATION SURFACE BASED ON MATKOWSKI CONTRACTIONS","authors":"QIAN-RUI Zhong, HONG-YONG Wang","doi":"10.1142/s0218348x24500130","DOIUrl":null,"url":null,"abstract":"In this paper, we construct a new kind of weighted recursive iteration function system (IFS) and prove the existence of the unique attractor for the kind of IFS based on the Matkowski fixed point theorem. We confirm that the attractor is a bivariate fractal interpolation surface (FIS), which interpolates a given set of data. In addition, we also provide an upper error estimate of such FISs caused by changes of weights. Finally, we give their box dimension estimates for a specific type of the FISs.","PeriodicalId":502452,"journal":{"name":"Fractals","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218348x24500130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we construct a new kind of weighted recursive iteration function system (IFS) and prove the existence of the unique attractor for the kind of IFS based on the Matkowski fixed point theorem. We confirm that the attractor is a bivariate fractal interpolation surface (FIS), which interpolates a given set of data. In addition, we also provide an upper error estimate of such FISs caused by changes of weights. Finally, we give their box dimension estimates for a specific type of the FISs.
基于马特科夫斯基收缩法构建加权分形插值面
本文构建了一种新的加权递归迭代函数系统(IFS),并基于马特科夫斯基定点定理证明了该类 IFS 唯一吸引子的存在。我们证实该吸引子是一个双变量分形插值面(FIS),它可以对给定的数据集进行插值。此外,我们还提供了由权重变化引起的此类 FIS 的误差上限估计值。最后,我们还给出了特定类型 FIS 的盒尺寸估计值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信